
On Viewpoint-specific Microservice Modeling

Philip Wizenty

Institute for the Digital Transformation of Application and Living Domains,
University of Applied Sciences and Arts Dortmund,
Otto-Hahn-Straße 23, 44227 Dortmund, Germany,

philipnils.wizenty@fh-dortmund.de

1 Introduction

A microservice is typically designed, developed and deployed by a single team, with the potential
use of the DevOps paradigm [4]. DevOps teams typically consist of service developers, operators
and possibly domain experts, i.e., the roles of teams’ members are heterogeneous [5]. Thus,
microservice team members have different viewpoints on the system regarding their tasks, e.g.,
the design and implementation of a microservice as a service developer.

Model-driven Development (MDD) [1] is an approach to software engineering, that ab-
stracts from implementation details and is in particular beneficial to engineer complex and
distributed systems [3]. The benefits, provided by the usage of MDD, are model validation to
test systems’ correctness, simulations to predict systems’ behavior and code generation to in-
crease development productivity and reduce the number of errors. Furthermore, MDD enables
a viewpoint-specific abstraction of the software system by providing specialized models that
address the viewpoints of different stakeholders, e.g., domain experts create domain models for
domain concepts, while service developers create models that focus on microservice design.

In the following, we present three metamodels for viewpoint-specific modeling languages,
that can be used by DevOps-based microservice teams to create models for exploiting the
mentioned benefits of MDD in the context of Microservice Architecture (MSA) engineering.

2 Viewpoint-specific Metamodels for MSA Modeling

The metamodel for domain experts (cf. Figure 1a) provides concepts to build models, which cap-
ture domain-specific information for microservices. The metamodel supports PrimitiveType

and ComplexType data types. DataStructure and ListType are specializations of the complex
data types, which can be used to build data structures and lists of them. Furthermore, the
Context and Version concepts support domain model organization. Semantically, the Context
concept corresponds to the Bounded Context pattern of Domain-driven Design [2].

The metamodel for service developers (cf. Figure 1b) is built around the Microservice con-
cept. Endpoints, Interfaces, Operations and Protocols of microservices can be modeled to
specify essential service components. For the assignment of data types to operation parameters
in a service model, the metamodel defines the Import concept. It provides the possibility to
import complex types from domain models based on the metamodel in Figure 1a. To model
dependencies between microservices, the service metamodel also allows the import of service
models.

The metamodel for service operators in DevOps-based microservice teams is depicted
in Figure 1c. Operators can create models to specify aspects of microservice deploy-
ment and operation. For instance, the employed OperationTechnology, e.g., Docker1, and

1https://www.docker.com

https://www.docker.com

On Viewpoint-specific Microservice Modeling Philip Wizenty et al.

domain data a)

Primit iveValue

stringValue : String
booleanValue : Boolean
numericValue :
 ecore::EBigDecimal

ListType

DataFie ld

name : String
hidden : Boolean

D a t a
Structure

PossiblyImportedComplexType

Primit iveType

/typeName : String
/typeSize : Integer

Context

name : String

Type

ComplexType

name : String
/isStructure : Boolean
/isPrimitiveList : Boolean
/isStructuredList : Boolean

Version

name : String

ComplexType
Impor t

name : String
importURI : String

ImportedProtocol
AndDataFormat

services::Protocol
AndDataFormat

operation c)

*
0..1

data::Primit ive
Type

Operat ion
Technology

name : String

Infrastructure
Technology

Infrastructure
N o d e

Deployment
Technology

Container

BasicEndpoint

addresses : String[1..*]

data::Primit iveValue

ServiceProperty

name : String
mandatory : Boolean
 = false

ServicePropertyValue

services::Microservice

ImportedMicroservice

Operat ion
Environment

name : String
default : Boolean = false

services::Import

Operat ionNode

name : String

ServiceDeploymentSpecification

 *

0..1
initializedBy

required
Interfaces

required
Opera-
tions

*

*

*

1..*

{ s u b s e t }

ProtocolAndDataFormat

*

*

services b)

«enumeration»
Communication

Type

SYNCHRONOUS
ASYNCHRONOUS

«enumeration»
ImportType

DATATYPES
MICROSERVICES

data::Primit iveType
data::Type

ImportedType

PossiblyImportedOperation

/required : Boolean
/requiredByInterface : Boolean
/requiredByMicroservice : Boolean
/requiredByContainer : Boolean

ReferredOperat ion

Parameter

name : String
exchangePattern : ExchangePattern = IN
communicationType : CommunicationType
communicatesFault : Boolean = false
optional : Boolean = false

Operat ion

name : String
notImplemented : Boolean = false
visibility : Visibility
/notImplementedByContainer
 : Boolean
/effectivelyNotImplemented
 : Boolean
/effectiveVisibility : Visibility
/effectivelyInternal : Boolean

ProtocolSpecification

communicationType
 : CommunicationType

In ter face

name : String
notImplemented : Boolean
 = false
visibility : Visibility
/effectiveVisibility : Visibility
/effectivelyInternal : Boolean

PossiblyImportedInterface

/required : Boolean
/requiredByContainer : Boolean

PossiblyImportedMicroservice

DataFormat

formatName : String

Protocol

name : String
communicationType
 : CommunicationType

Endpoint

addresses
 : String[1..*]

«enumeration»
MicroserviceType

FUNCTIONAL
INFRASTRUCTURE
UTILITY

Microservice

name : String
version : String
type : MicroserviceType
visibility : Visibility
 = ARCHITECTURE
/effectiveVisibility : Visibility
/effectivelyInternal : Boolean

«enumeration»
Visibility

INTERNAL
IN_MODEL
ARCHITECTURE
PUBLIC

Impor t

name : String
importURI
 : String
importType
 : ImportType

«enumeration»
Exchange

Pat te rn

IN
OUT
INOUT

{ x o r }

{ x o r }

{ x o r }
1..* 1..*

0..1
super

0..1

1..* 1..*

1..*

 1..*

*

1..*

* *

*

*

*

 1..*

0..1

0..1

 1..*
1..*

 { subse t }

1..*

default

1..2

*

0..1

0..1

0..1 0..1

 0..2
*

0..2

*

0..2

 requiredServices
0..1

Figure 1: Domain Data, Service and Operation Viewpoint Metamodel

OperationEnvironment, e.g., a Docker image, can be expressed. OperationNode is the cen-
tral concept of the metamodel. It represents either a Container or InfrastructureNode, and
references a microservice being imported from a service model (cf. Figure 1b) to specify its
deployment and related characteristics like its BasicEndpoints.

3 Conclusion

In our paper, we introduced metamodels for different viewpoints in DevOps-based microservice
teams to enable viewpoint-specific MDD of MSA. Currently, we are working on code generators
to derive executable service code as well as deployment descriptors from service and operation
models being based on the metamodels.

In our talk, we focus on the practical usage and benefits of MDD for MSA by showing the
usage of concrete modeling languages for the metamodels, which are realized as Eclipse2 plugins
and is published on Github3. Therefore, we will create domain, service and operation models
for a case study microservice architecture from the electromobility domain.

References

[1] Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim Steel, and Didier
Vojtisek. Engineering Modeling Languages. CRC Press, 2017.

[2] Eric Evans. Domain-Driven Design. Addison-Wesley, 2004.

[3] R. France and B. Rumpe. Model-driven development of complex software: A research roadmap.
Proc. of the 2007 Workshop on Future of Software Engineering (FOSE), 2007.

[4] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven design for cloud infras-
tructure devops. In Proc. of the Int. Conf. on Cloud Engineering, pages 202–211. IEEE, 2016.

[5] Irakli Nadareishvili, Ronnie Mitra, Matt Mclarty, and Mike Amundsen. Microservice Architecture.
O’Reilly Media, 2016.

2http://www.eclipse.org
3https://github.com/SeelabFhdo/ddmm

2

http://www.eclipse.org
https://github.com/SeelabFhdo/ddmm

	Introduction
	Viewpoint-specific Metamodels for MSA Modeling
	Conclusion

