
Microservices: A Taxonomy

Stefan Tilkov1

innoQ Deutschland GmbH, Monheim, Germany
stefan.tilkov@innoq.com

Abstract

A microservices services architecture has become a standard way to approach the mod-
ular design of large scale systems. But while there are some traits that most practitioners
can agree on, such as independent deployment, choice in implementation details, polyglot
persistence, and benefits such as isolation, better parallelization, and improved scalability,
there are still vast differences between the diverse approaches taken in practice. In this
talk, we will categorize different ways to approach the architectural style, and highlight
differences, benefits, and downsides of various interpretations found in projects.

1 Microservices: A Taxomony

The most important criteria for the taxonomy are individual microservices size, the number of
microservices resulting from the choice of size, and the communication patterns that emerge to
connect them. Based on these aspects, we can derive at least four main categories of microser-
vices architecture:

• The minimalistic style used when services are built with the goal to be as small as possible,
labeled FaaS (Function as a Service)

• The style of small services, mostly communicating synchronously, forming larger units that
collaborate to achieve a business goal, using approaches well known from service-oriented
architecture, thus labeled Micro-SOA

• An approach where larger units are formed that are able to fulfill most of their tasks
independently. They mostly rely on asynchronous communication and accept some re-
dundancy as the price for increased autonomy. Synchronous communication is only used
to fulfill service requests and asynchronous communication is used to support synchro-
nization between services, labeled DDDD (for “distributed domain-driven design” due to
the similarity with DDDs bounded contexts)

• A system built from larger-scala subsystems where each of them contains not only data
handling and business logic, but also its own UI. Integration is done mostly on the fron-
tend, and communication among services is minimized (called SCS for self-contained
systems).

2 Comparison

For each of the different styles, it can be shown that they are suitable for different goals. The
FaaS style works well when a strong dependency to some infrastructure component (such as a
cloud vendors serverless platform) is acceptable and the main goal is to build “glue code” to
connect the vendors services. For the Micro-SOA style, the most important benefit is runtime
scalability, whereas the DDDD approach is well-suited when it development-time scalability of

https://www.innoq.com/en/staff/stefan-tilkov/


A Microservices Taxonomy Tilkov

teams is at the center of attention. Due to its embracing the UI aspect, the SCS approach is
very well suited to systems where modularity is required in the frontend parts of a system to a
similar degree as in the backend. The presentation will thus show that no single solution is the
best for all cirumstances, and highlight how one might approach selecting the one that works
best.

3 Conclusion

While the categorization that will be presented has been successfully used in practice, it is most
definitely not complete. It can serve as a starting point to categorize more proven approaches,
ideally assigning them clear and unambiguous names, helping to clarify the pros and cons of
different architectural choices.

2


	Microservices: A Taxomony
	Comparison
	Conclusion

