
DOMAIN-SPECIFIC

SERVICE DECOMPOSITION

WITH

MICROSERVICE API PATTERNS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

Keynote,

International Conference on Microservices 2019

Dortmund, Germany

February 19, 2019

Abstract

 Service orientation is a key enabler for cloud-native application development.

Microservices have emerged as a state-of-the-art implementation approach for

realizations of the Service-Oriented Architecture (SOA) style, promoting modern

software engineering and deployment practices such as containerization,

continuous delivery, and DevOps.

 Designing (micro-)services interfaces to be expressive, responsive and evolvable

is challenging. For instance, deciding for suited service granularities is a

complex task resolving many conflicting forces; one size does not fit all. Domain-

Driven Design (DDD) can be applied to find initial service boundaries and cuts.

However, service designers seek concrete, actionable guidance going beyond

high-level advice such as “turn each bounded context into a microservice”.

Interface signatures and message representations need particular attention as

their structures influence the service quality characteristics.

 This presentation first recapitulates prevalent SOA principles, microservices

tenets and DDD patterns. It then reports on the ongoing compilation of

complementary microservices API patterns and proposes a set of pattern-based,

tool-supported API refactorings for service decomposition. Finally, the

presentation highlights related research and development challenges.

© Olaf Zimmermann, 2019.

Page 2

Architecture of this Talk (“Micropresentations”)

Page 3

© Olaf Zimmermann, 2019.

SOA 101 &

Microservices

Tenets

Real-World

Service Examples

(Case Studies)
Service

Granularity

and Loose

Coupling

Microservice API

Patterns (MAP)

Architectural

Refactoring

(to Microservices)

Service Analysis

& Design

(Modeling)

Mythbusting

Patterns

Research

Pbs/Qs

Experience

Opinions

Literature

Analysis

Legend:

Introduction to

Domain-Driven

Design

Sample Project: Financial Services Provider (for Retail Banks)

 Supports – and partially automates – core banking business processes

 More than 1000 of business services, each providing a single operation

 One database repository, logically partitioned

© Olaf Zimmermann, 2019.

Page 4

Reference: IBM, ACM OOPSLA 2004

Exemplary Service Operations in Core Banking

Fine (business) Coarse (business)

Fine (technical) “Hello world” of core banking:
int

getAccountBalance

(CustomerId)

“Big data” customer profiling (condensed):
ActivityClassificationEnum

scoreMonthlyInvestmentActivity

(CustomerId, Month, Year)

Coarse (technical) Single domain entity, but complex

payload (search/filter capability):
CustomerDTOSet

searchCustomers

(WildcardedCustomerName,

CustomerSegment, Region)

Deep analytics («Kundengesamtübersicht»):
BankingProductPortfolioCollection

prepareCustomerAnalysisForMeeting

(CustomerId, Timeframe)

 Business granularity:

 Functional scope, domain model coverage

 Technical granularity:

 Structure of message representations a.k.a.

Data Transfer Object (DTOs)

© Olaf Zimmermann, 2019.

Page 5

Business alignment/agility?

Independent deployability?

Client/server coupling?

Sample Project: Order Management Application (Telecommunications)

© Olaf Zimmermann, 2019.

Page 6

Reference: IBM,

ECOWS 2007

Exemplary Services in Order Management (Telecomunications)

 Endpoints play different roles in microservices architectures

– and their operations fulfill certain responsibilities):

 Pre- and postconditions

 Conversational state

 Data consistency vs. currentness

© Olaf Zimmermann, 2019.

Page 7

Impact on scalability and

changeability?

Computation Function: no read, no write Event Processor: write only

Business Activity Processors: read-writeRetrieval Operations: read only

What is Service-Oriented Architecture (SOA)?

Page 8

© Olaf Zimmermann, 2019.

No single definition – “SOA is different things to different people”:

 A set of services and operations that a business wants to expose to

their customers and partners, or other portions of the organization.

• Note: no scope implied, enterprise-wide or application!

 An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server).

• Note: this is where the “business-alignment” becomes real!

 A set of architectural patterns such as service layer (with remote

facades, data transfer objects), enterprise service bus, service

composition (choreography/orchestration), and service registry,

promoting principles such as modularity, layering, and loose

coupling to achieve design goals such as reuse, and flexibility.

• Note: not all patterns have to be used all the time!

 A programming and deployment model realized by standards,

tools and technologies such as Web services (WSDL/SOAP),

RESTful HTTP, or asynchronous message queuing (AMQP etc.)

• Note: the “such as” matters (and always has)!

Business

Domain

Analyst

IT

Architect

Developer,

Administrator

Based on and adapted from: IBM SOA Solution Stack, IBM developerWorks

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

Page 9

© Olaf Zimmermann, 2019.

Our focus today

Microservices!

No longer popular

(term repurposed for

deployment context)

Our focus today

Debatable

(then and now)

Data Contracts

Seven Microservices Tenets (by Viewpoint)

Page 10

© Olaf Zimmermann, 2019.

Independent-X
(X = Deployment,

Scaling, Change)
Polyglot

Programming and

Persistence

Business

Alignment
(e.g. via DDD)

IDEAL Cloud

Architectures
(e.g.12-Factor App)

Service

Monitoring

(DevOps Way)

Decentralization

& Automation

(CI/CD)

Containerization

and Clustering

Archi-

tecture

Analysis,

Design &

Coding

Deploy-

ment &

Runtime

Legend:

well-known

fairly recent advances

http://rdcu.be/mJPz
http://rdcu.be/mJPz

Cloud-native application architectures are API-centric

Page 11

© Olaf Zimmermann, 2019.

http://www.cloudcomputingpatterns.org

API

API API

IDEAL: Isolated State, Distribution/Decomposition, Elasticity, Automation, Loose Coupling

http://www.cloudcomputingpatterns.org/

Calls to Service Operations

Page 12

© Olaf Zimmermann, 2019.

PayloadHeader
Envelope

Header Payload

Wrapper

Payload

Header Payload

Wrapper

Envelope

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

Sample request

message

(note: PUTs and POSTs

would look different)

Response

message

structure

{[…]}

{[…]}

are EIP-style Messages

{[…]} -- some JSON (or other MIME type)

+/-?

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

How to find suited granularities and achieve loose coupling?

Page 13

© Olaf Zimmermann, 2019.

Context

We have decided to go the SOA and/or microservices way. We use DDD for

domain modeling and agile practices for requirements elicitation.

Problems (Industry, Academia)

How to identify an adequate number of API endpoints and operations?

How to design (command/document) message representation structures

so that API clients and API providers are loosely coupled

and meet their (non-) functional requirements IDEALy?

Which patterns, principles, and practices do you use? Do they work?

Introducing… Microservices API Patterns (MAP)

 Identification Patterns:

 DDD as one practice to

find candidate endpoints

and operations

 Evolution Patterns:

 Work in progress

(EuroPLoP 2019?)

© Olaf Zimmermann, 2019.

Page 14

http://microservice-api-patterns.org

http://microservice-api-patterns.org/

MAP Example: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can an API provider optimize a response to an API client that should

deliver large amounts of data with the same structure?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 15

© Olaf Zimmermann, 2019.

MAP Example: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses

 Public APIs of social networks

Page 16

© Olaf Zimmermann, 2019.

Microservices API Patterns (MAP): Pattern Index by Category

Page 17

© Olaf Zimmermann, 2019.
http://microservice-api-patterns.org

https://microservice-api-patterns.org/
https://microservice-api-patterns.org/
http://microservice-api-patterns.org/

 Quality-related decision model published at ICSOC 2018

 More problem-pattern mappings (emerging):

 MAP Cheat Sheet: https://microservice-api-patterns.org/cheatsheet

 Attribute-Driven Design: https://microservice-api-patterns.org/patterns/byforce

Recurring Architectural Decisions in (Micro-)Service Design

© Olaf Zimmermann, 2019.

Page 18

https://microservice-api-patterns.org/cheatsheet
https://microservice-api-patterns.org/patterns/byforce

More Decisions that Recur in (Micro-)Service Design

Page 19

https://microservice-api-

patterns.org/cheatsheet

(emerging)

© Olaf Zimmermann, 2019.

https://microservice-api-patterns.org/cheatsheet

Open Problem: Service Identification/Design (“DDD 4 SOA/MSA”)

Page 20

Research Questions

Which existing patterns are particularly suited to analyze and design cloud-

native applications and to modernize existing systems (monoliths/megaliths)?

How can these patterns be combined with Microservices API Patterns (MAP)

and other SOA/microservices design heuristics

to yield a service-oriented analysis and design practice?

Which patterns and practices do you apply? What are your experiences?

© Olaf Zimmermann, 2019.

Strategic DDD Context Map: Relationship Example

 Insurance scenario, source: https://contextmapper.github.io/

Page 21

© Olaf Zimmermann, 2019.

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

https://contextmapper.github.io/

Context Mapper: A DSL for Strategic DDD

 Eclipse plugin Based on:

 Xtext

 ANTLR

 Sculptor (tactic DDD DSL)

 Author: S. Kapferer

 Term project HSR FHO

© Olaf Zimmermann, 2019.

Page 22

https://contextmapper.github.io/
https://contextmapper.github.io/

DDD Applied to (Micro-)Service Design

 M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

 Applies and extends DDD books by E. Evans and V. Vernon

© Olaf Zimmermann, 2019.

Page 23

Reference: JUGS presentation, Berne, Jan 9, 2019

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

Implementing Domain-Driven Design with RESTful HTTP APIs

 Mentioned in DDD book by V. Vernon (and blog posts, presentations):

 No 1:1 pass-through (interfaces vs. application/domain layer)

 Bounded Contexts (BCs) offered by API provider, one API endpoint and

IDE project for each team/system BC (a.k.a. microservice)

 Aggregates supply API resources or (responsibilities of) microservices

 Services donate top-level (home) resources in BC endpoint as well

 The Root Entity, the Repository and the Factory in an Aggregate suggest

top-level resources; contained entities yield sub-resources

 Repository lookups as paginated queries (GET with search parameters)

 Additional rules of thumb (own experience, literature):

 Master data and transactional data go to different BCs/aggregates

 Creation requests to Factories become POSTs

 Entity modifiers become PUTs or PATCHes

 Value Objects appear in the custom mime types representing resources

© Olaf Zimmermann, 2019.

Page 24

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html

Open Problem: Service Decomposition

Page 25

Research Questions

How can systems be decomposed into services (in forward engineering)?

How do the applied criteria and heuristics differ

from software engineering and software architecture “classics”

such as separation of concerns and single responsibility principle?

Which methods and practices do you use? Are they effective and efficient?

© Olaf Zimmermann, 2019.

Heuristics that do not suffice (IMHO)

 Two-pizza rule (team size)

 Lines of code (in service implementation)

 Size of service implementation in IDE editor

 Simple if-then-else rules

 E.g. “If your application needs coarse-grained services, implement a SOA;

if you require fine ones, go the microservices way” (I did not make this up!)

 Non-technical traits such as “products not projects”

 Because context matters, as M. Fowler pointed out at Agile Australia 2018

© Olaf Zimmermann, 2019.

Page 26

What is wrong with these “metrics” and “best practice”

recommendations?

https://martinfowler.com/articles/agile-aus-2018.html

Agility, Consistency, State/Scalability (CAS) Tradeoffs

© Olaf Zimmermann, 2019.

Page 27

ACS

Dichotomy

Business

Agility

Scalable

State Mgmt.

Resource

Consistency

 Data freshness

 Ability to respond to change

 Big data requirements

 Sharding, partitioning

 Strict & eventual consistency

 Audit requirements

 Incl. backup

 State management

 Quick access, caching?

 Stickiness in cluster?

Modular Monolith

Microservices

“Conservative” SOA

(Macroservices)

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, JHipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsibilities are

shown.

Coupling Criteria (CC) in “Service Cutter” (Ref.: ESOCC 2016)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

Page 29

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

© Olaf Zimmermann, 2019.

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Page 30

Research Questions

How to migrate a modular monolith to a services-based cloud application

(a.k.a. cloud migration, brownfield service design)?

Can “micro-migration/modernization” steps be called out?

Which techniques and practices do you employ? Are you content with them?

© Olaf Zimmermann, 2019.

Code Refactoring vs. Architectural Refactoring

 Refactoring are “small behavior-preserving transformations”

(M. Fowler 1999)

 Code refactorings, e.g. “extract method”

 Operate on Abstract Syntax Tree (AST)

 Based on compiler theory, so automation possible

(e.g., in Eclipse Java/C++)

 Catalog and commentry: http://refactoring.com/

 Architectural refactorings

 Resolve one or more architectural smells, have an impact on quality attributes

 Architectural smell: suspicion that architecture is no longer adequate (“good enough”)

under current requirements and constraints (which may differ form original ones)

 Are carriers of reengineering knowledge (patterns?)

 Can only be partially automated

© Olaf Zimmermann, 2019.

Page 31

http://refactoring.com/

Architectural Refactoring: [Name]

Context (viewpoint, refinement level):

• […]

Quality attributes and stories (forces):

• […]

Smell (refactoring driver):

• […]

Architectural decision(s) to be revisited:

• […]

Refactoring (solution sketch/evolution outline):

• […]

Affected components and connectors (if modelled explicitly):

• […]

Execution tasks (in agile planning tool and/or full-fledged design method):

• […]

Refactoring to Microservices API Patterns

 Template and cloud refactorings

 First published @ SummerSoc 2016

 Summary: IEEE Software, InfoQ

Page 32

Work in progress!

© Olaf Zimmermann, 2019.

 Microservices refactorings:

 Future work for MAP

https://www.infoq.com/articles/architectural-refactoring
https://www.infoq.com/articles/architectural-refactoring

Open Problem: Service/Data Visualization (Modeling)

Page 33

Research Questions

What is an intuitive, easy-to-sketch graphical representation for (micro-)services

and their endpoints, operations, and message representations?

Which notations and tools do you use?

Do they make communication effective and efficient?

© Olaf Zimmermann, 2019.

https://ieeexplore.ieee.org/document/7458757?arnumber=7458757
https://ieeexplore.ieee.org/document/7458757?arnumber=7458757

Visualizing Operations and Message Representations

 Ports-and-adapters combined with layering (“hexagonioning”):

 Inspired by https://herbertograca.com/2017/11/16/explicit-architecture-01-

ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/

© Olaf Zimmermann, 2019.

Page 34

Ports

Adapters

Data

Domain Logic

Request

message

representation

Response message representation

{[…]}

{[…]}

Representation
Layer

MessageService

Legend:

Provided interfaceRequired interface

https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/

Customer

Data

Customer Core Microservice

Example: Lakeside Mutual Microservices

 Use patterns to specify:

 Role and responsibility of API call

 Message representations

 Documentation and governance

© Olaf Zimmermann, 2019.

Page 35

Domain Layer

Data

Layer

n/a

Interface Layer

Customer

Proxy

Customer Self Service Application

Customer

Endpoint

Mutation

Checker

myLakesideMutual

Web Forms

Microservices – Summary and Opinions

 Microservices have many predecessors (evolution not revolution)

 Implementation approach and sub-style of SOA

 More emphasis on autonomy and decentralization

(of decisions, of data ownership), less vendor-driven

 Automation advances and novel target environments

 One service size does not fit all

 Context matters and forces at work

 Size and granularity are not ends in themselves

 Goal: achieve “Independent X” – but do not forget BAC and CAP (and ACS)

 Architecture and architects needed more than ever

 More options, higher consequences of not making adequate decisions

 Microservices API Patterns; Context Mapper, Service Cutter

 Public website now available

 Pattern language, sample implementations, supporting tools

 Service modeling, identification, decomposition, refactoring problems

© Olaf Zimmermann, 2019.

Page 36

https://microservice-api-patterns.org/

Microservices Publications

 Zimmermann, O.: Microservices Tenets – Agile Approach to Service Development and Deployment

 Springer Comp Sci Res Dev, 2017, http://rdcu.be/mJPz

 Pardon, G., Pautasso, C., Zimmermann, O.: Consistent Disaster Recovery for Microservices: the

Backup, Availability, Consistency (BAC) Theorem

 In: IEEE Cloud Computing, 5(1) 2018, pp. 49-59.

 Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural Principles for Cloud Software

 In: ACM Trans. on Internet Technology (TOIT), 18 (2) 2018, pp. 17:1-17:23.

 Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating Enterprise Legacy Source Code

to Microservices: On Multitenancy, Statefulness, and Data Consistency

 In: IEEE Software, 35 (3) 2018, pp. 63-72.

© Olaf Zimmermann, 2019.

Page 37

(screen captions

are hyperlinks)

https://link.springer.com/article/10.1007/s00450-016-0337-0
http://rdcu.be/mJPz
http://design.inf.usi.ch/publications/2018/bac-theorem
https://www.researchgate.net/publication/317348634_Architectural_Principles_for_Cloud_Software
https://ieeexplore.ieee.org/abstract/document/8186442/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

