Towards a Model-driven Testing Approach for Microservice
Architectures in the Automotive Domain

Philipp Heisig! and Sabine Sachweh®

IDiAL — Dortmund University of Applied Sciences & Arts,
philipp.heisig@fh-dortmund.de

Abstract

Connectivity and digitization have turned vehicles into smart devices which contin-
uously increasing their functionality by interacting with their environment and sharing
multi-modal mass data among people, businesses, service providers, or OEMs within the
context of the Internet of Things. While microservices features scalability and flexibil-
ity, they are especially suitable for realizing mobility services that are deployed in cloud
infrastructures. However, as connected vehicle scenarios have to consider environmental
conditions, such as a changing connectivity, the according cloud-based mobility services
must be extensively tested at different stages of the development process to get continuous
feedback on how well-designed the software architecture and the service itself is. Never-
theless, testing requires mass data from real world scenarios to ensure both the proper
functionality of the service and that the architecture is robust and scales with a varying
number of vehicles. This paper addresses this problem by proposing a model-driven test
framework for the virtual validation of cloud-based mobility services. Therefore, different
simulators will be coupled within a co-simulation environment to generate massive amounts
of vehicle-specific data and simulate the environmental conditions in which vehicles oper-
ate. This allows a scenario-driven validation if a service react flexibly (scalability), reliably
(robustness), and with the intended behavior to service requests from vehicles.

1 Introduction

Technological advances, digitization, and area-wide mobile Internet have transformed vehicles
into software-based high tech products with built-in connectivity and autonomous driving fea-
tures. The rapid growth and the tremendous number of connected vehicles on the road makes
the connected vehicle domain a major element of the Internet of Things (IoT) [3]. In gen-
eral, these vehicles are characterized by the massive amounts of multi-modal data provided by
various sensors, the behavior of consumers, and the interaction with the environment. Edge
computing combined with smart infrastructures allows to even generate more informative and
synthetic data in this context. By collecting, exchanging, fusing, analyzing, and processing
this mass data in multiple and simultaneously operating applications within the Cloud, inno-
vative and data-driven mobility service can be realized, spanning from road safety over smart,
efficient, and green transportation to location-dependent services [7]. Thus, future connected
vehicles will exhibit a cloud-based vehicle architecture allowing a much higher level of integra-
tion and an increased number of use cases [4]. However, vehicles operate in a safety-critical
and time-sensitive environment with changing conditions. Thus, unreliable vehicle connectivity
with changing data transfer rates must be expected and real-time processing of the resulting
data may be necessary for autonomous driving features. Furthermore, cloud-based mobility
services have to scale with the high number of vehicles on the road, while the architecture has
to process also a variance in data stemming from different types of vehicles.

While the Microservice Architecture (MSA) style denotes a promising solution for the design
and implementation of cloud-based mobility services [8], testing and validation of the deployed

Model-driven Validation of Microservice Architectures in the Automotive Domain Heisig, Sachweh

microservices poses several new challenges that go beyond the requirements of other IoT do-
mains [10]. As such services running in the Cloud and serving multiple and a varying number
of vehicles on demand, they must be tested with a broad range of connected vehicles including
their interaction with the environment [6]. Thus, a massive amount of vehicle-specific data need
to be fed into the services for a validation regarding their proper functionality and the fulfill-
ment of non-functional requirements, in particular scalability and reliability. However, such a
validation cannot be accomplished by occasionally applied approaches: Test drives based on a
vehicle fleet or setting up a large number of hardware and vehicle nodes to generate vehicle-
specific data are not feasible from an economic and operational perspective [2] as they are
cost-intensive and require special domain knowledge. Especially in early development phases,
the risks and legal requirements stand in the way of extensive test drives. While the use of
so-called dummy data would allow to validate the scalability and robustness of software archi-
tectures to a certain extent, the lack of semantics and variance in the data sets does not allow
to validate the functionality of the services. In addition to the provision of meaningful data
sets, also environmental conditions like a changing connectivity have to be taken into account
for the validation process. Thus, novel and open testing methodologies are required that do not
exhibit any real hardware components, but rather foster a virtual test environment that can be
easily set up, replicated, and used for various connected vehicle scenarios.

2 Virtual Testing Cloud-native Mobility Services

One way to enable a virtual validation of such mobility services is the usage of simulators.
Simulators have been a widely used tool within the automotive sector for decades as they allow
for a proof-of-concept design and evaluation by spanning both virtual and physical domains
[1]. Not only they are cheaper than real tests, they can also be carried out much earlier
in the development process to provide valuable feedback to service developers. Nevertheless,
simulators are usually specialized in reproducing certain aspects, e.g. simulating vehicular
networks. Thus, different kind of simulators have to be interconnected in a co-simulation to
support all of the previously described validation aspects. Setting up such a co-simulation
environments is, however, a complex and time-consuming task, that requires a lot of domain
knowledge. Developers that are experienced in implementing MSAs or developers that come
from a different domain, such as insurance companies or breakdown services, may do not have
this domain knowledge or want to focus on the actual application and possible innovations.
Figure 1 proposes a model-based approach for abstracting the complexity by generating an
adequate simulation environment for testing mobility services and their Cloud architectures via
a model-based scenario description. In this way, service providers can be supported with the
realization of innovative mobility services by getting continuous feedback along the development
process (feedback loop), especially in early phases when software architectures are designed.
The following steps describe the approach and the integration at any stage of a development
process:

1. Scenario Specification: The first step is the definition of a connected vehicle scenario
(Scenario Specification) including its requirements, which is usually done by a domain
expert in natural language. Based on this, developers can start to define a first software
architecture sketch and implement basic functionality. Likely, the architecture will be a
MSA to feature scalability and flexibility.

2. Modeling and Configuration: Within the second step, the Scenario Specification will be
formalized via a Domain-Specific Modeling Language (DSML) that is designed for describ-

Model-driven Validation of Microservice Architectures in the Automotive Domain Heisig, Sachweh

Domain Software
Expert Developer

STOP

FALSCH

- ‘
Connected Vehicle Scenario
- ‘_Q & Cloud
Scenario Evaluation @ Environment
Specification Results Feedback Loop
Test Data

Scalability ~ Connectivity —Real-time)\ IS » []
ﬁq - T q} Generated
' Config

" - Big Data
Scenario Data privacy

Generator Simulator
Configurations Traffic Vehicular In-Vehicle
Model-based simulation Netwark Simulation
NS

- . e Simulation
Scenario Description

Cloud-based
Mobility Service

Modelling
Language Co-Simulation Environment

Figure 1: Model-driven co-simulation framework for the virtual validation of mobility services

ing non-functional requirements towards cloud-based mobility services, e.g. how many
and what types of vehicles should be simulated. In addition, the DSML can be extended
to capture domain-independent testing aspects like data privacy. The resulting Scenario
Model act as input for a set of Config Generators, which automatically generate configu-
rations for each simulator used in the scenario. Depending on the simulation tool and in
which way it can be configured, model-to-model or model-to-text transformations can be
applied for the generation process.

3. Co-simulation: While the configurations allows to set up each simulator independently,
they still need to be integrated into a co-simulation environment including a component
that is responsible for orchestrating and controlling the simulation flow of each simulator
to enable interoperability among the simulators. The simulation environment then allows
to generate large amount of semantically enriched vehicle data on different level of detail.
For a replication of tests or to carry out tests at any time, the generated data will be
persisted in a data base.

4. Feedback Loop: In the last step, test data from the simulation will be contentiously fed into
the mobility service to test both the service functionality and the software architecture
behind. Predefined metrics asses the architecture against the different non-functional
requirements defined in the Scenario Model, such as response time or the amount of
vehicles that have been simultaneously served. But also metrics specifically developed for
MSAs can be integrated to identify, for example, microservices anti pattern [9] such as
API versioning or hardcoded endpoints. Another example for such a MSA metric would
be to measure the cyclic dependency, i.e. the amount of inter-service communication.
The test results are then generated by a Report Generator and allow the developer to
improve the architecture and service implementation and test it again, either via new
data sets or based on the previous one to establish a (Feedback Loop).

Model-driven Validation of Microservice Architectures in the Automotive Domain Heisig, Sachweh

3 Conclusion & Future Work

In this paper, we proposed an approach for a scenario-driven validation of cloud-based mobility
services that can be applied at different phases in the development process to continuously
asses and improve the software architecture as well as ensure the correct behavior of the service
functionality. Especially the technical debt can be reduced when applying testing already at
early stages of the development process. A first proof of concept with one traffic simulator for
the previously described approach has been published in [5]. The results demonstrated, that
traffic simulators are in general suitable for testing functional and non-functional requirements
of cloud-based mobility services, but that connected vehicle specific aspects need more thor-
ough investigations. Although the focus in this paper is on testing MSAs in the automotive
domain, the approach can be also applied to other domains by using a subset of the simulators
or providing support for additional simulators from other domains.

Among the implementation of the different components in Figure 1, we are planning for the
future to study existing MSAs from both automotive and other domains to identify potential
metrics for assessing the architecture and services quality. This also gives further insights into
the definition of an appropriate DSML. In addition, mechanisms for enabling Command &
Control from the application under test to the simulations have to be developed.

References

[1] Tan Briggs, Martin Murtagh, Robert Kee, Geoffrey McCulloug, and Roy Douglas. Sustainable
non-automotive vehicles: The simulation challenges. Renewable and Sustainable Energy Reviews,
68:840-851, 2017.

[2] Maxim Chernyshev, Zubair Baig, Oladayo Bello, and Sherali Zeadally. Internet of things (iot):
Research, simulators, and testbeds. IEEE Internet of Things Journal, 5(3):1637-1647, 2017.

[3] Juan Contreras-Castillo, Sherali Zeadally, and Juan Antonio Guerrero-Ibanez. Internet of vehicles:
architecture, protocols, and security. IEEE Internet of Things Journal, 5(5):3701-3709, 2017.

[4] T. Haberle, L. Charissis, C. Fehling, J. Nahm, and F. Leymann. The connected car in the cloud:
A platform for prototyping telematics services. IEEE Software, 32(06):11-17, nov 2015.

[5] Philipp Heisig, Sven Erik Jeroschewski, Johannes Kristan, Robert Hottger, Ahmad Banijamali,
and Sabine Sachweh. Bridging the gap between SUMO & kuksa: Using A traffic simulator for test-
ing cloud-based connected vehicle services. In Melanie Weber, Laura Bieker-Walz, Robert Hilbrich,
and Michael Behrisch, editors, Simulating Connected Urban Mobility, SUMO User Conference
2019, May 13-15, 2019, Berlin-Adlershof, Germany, volume 62 of EPiC Series in Computing,
pages 213-229. EasyChair, 2019.

[6] Mérton Tamds Horvdth, Tamds Tettamanti, Baldzs Varga, and Zsolt Szalay. The scenario-in-the-
loop (scil) automotive simulation concept and its realisation principles for traffic control. 2019.

[7] Ning Lu, Nan Cheng, Ning Zhang, Xuemin Shen, and Jon W Mark. Connected vehicles: Solutions
and challenges. IEEE internet of things journal, 1(4):289-299, 2014.

[8] Tobias Schneider and A Wolfsmantel. Achieving cloud scalability with microservices and devops
in the connected car domain. In Software Engineering (Workshops), pages 138-141, 2016.
[9] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Microservices Anti-patterns: A Tazonomy,
pages 111-128. Springer International Publishing, Cham, 2020.
[10] Ibrar Yaqoob, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib Ibrahim Abdalla
Ahmed, Abdullah Gani, Muhammad Imran, and Mohsen Guizani. Internet of things architecture:

Recent advances, taxonomy, requirements, and open challenges. IEEE wireless communications,
2017.

	Introduction
	Virtual Testing Cloud-native Mobility Services
	Conclusion & Future Work

