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1 Introduction

Serverless computing [10] is a new development paradigm where programmers write and compose
stateless functions, leaving to Serverless infrastructure providers the duty to manage their
deployment and scaling. Hence, the “less” refers to the absence of some server-related concerns,
namely, their maintenance, scaling, and expenses of their sub-optimal management (e.g., idle
servers). Recent works investigated the Serverless paradigm under the lenses of Software
Engineering, associating it to that of stateless Microservices architectures [11]

While Serverless providers have become more and more common [2, 1, 12, 5, 9, 7, 8]
the technology is still in its infancy and there is much work to do to overcome the many
limitations [7, 3, 6, 10] that hinder its wide adoption. One of the main challenges to address
is how should Serverless providers schedule the functions on the available computation nodes,
known as function-execution scheduling optimisation [7]. To tackle the problem, we propose a
methodology that provides developers with a declarative language, called Allocation Priority
Policies (APP) for specifying scheduling policies for their functions. Then, the serverless function-
execution scheduler follows those policies to find the computation node—called worker—that,
given the current status of the system, best fits the constraints for the given function. To
substantiate our proposal, we extend the scheduler of Apache OpenWhisk [1], a well-known
open-source Serverless platform, into a prototype that supports APP-defined scheduling policies.
In Section 2 we present the APP language through an example and give details of our prototype.

2 The APP language

Current serverless platforms, like OpenWhisk, come equipped with hard-coded load balancing
policies. With the APP language users specify customised load balancing policies and overcome
the inflexibility of the hard-coded load balancing ones. The idea is that both developers and
providers can write, besides the functions to be executed by the platform, a policy that instructs
the platform on what computation nodes preferably run each function.

As an example, consider some functions that need to access a database. To reduce the
latency of accessing the data, the best option would be to run those functions on the same pool
of machines that run the database. If that option is not valid, then running those functions on
workers in the proximity (e.g., in the same network domain) is preferable than using workers
located further away (e.g., in other networks). We use this example to illustrate the syntax and
semantics of the APP language, whose script we show in Fig. 1.

The basic entities considered in the APP language are a) scheduling policies, identified by a
policy tag identifier to which users can associate their functions—the policy-function association
is a one-to-many relation—and b) the workers identified by a worker label—where the label
identifies a collection of workers.
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An APP script is a YAML [4] file specifying a sequence of policies. Given a tag, the
corresponding policy includes a list of workers blocks, possibly closed with a followup strategy. A
workers block has three parameters: a collection of worker labels, a possible scheduling strategy,
and an invalidate condition. The followup strategy applies when all workers are invalid and can
either point to a special policy, called default, or fail.

couchdb_query:

- workers:

- DB_worker1

- DB_worker2

strategy: random

invalidate: ↩

capacity used: 50%

- workers:

- near_DB_worker1

- near_DB_worker2

strategy: best_first

invalidate: ↩

max concurrent invocations: 100

followup: fail

default:

- workers: "*"

strategy: platform

invalidate: overload

Figure 1: APP script example.

The APP script in Fig. 1 starts with the couchdb_query

tag, used for those functions that access the database.
Then, the keyword workers indicates the first block of
worker labels, which identify the workers in the proximity
of the database, i.e., DB_worker1 and DB_worker2, associ-
ated to three parameters: the strategy used by the sched-
uler to choose among the listed workers, the policy that
invalidates the usage of a selected worker label, and the
followup policy in case all workers are invalidated. In the
example, we select one of the two worker labels randomly
and we invalidate their usage if the workers corresponding
to the chosen label are used at more than the 50% of their
capacity (capacity used). When both worker labels are
invalid, the scheduler goes to the next workers block, with
near_DB_worker1 and near_DB_worker2, chosen following a
best first strategy—where the scheduler considers the
ordering of the list of workers, sending invocations to the
first until it becomes invalid, to then pass to the next ones
in order. The invalidate strategy of the block regards the
maximal number of concurrent invocations for each mem-
ber of a given worker label—max concurrent invocations,
which is set to 100. If all the worker tags are invalid, the
scheduler applies the followup behaviour, which is to fail.

The other policy tag in Fig. 1 is default: a special tag used to specify the policy for non-
tagged functions, or to be adopted when a tagged policy has all its members invalidated, and
the followup option is default.

In Fig. 1, the default tag describes the default behaviour of the serverless platform running
APP. The wildcard "*" for the workers represent all worker labels. The strategy selected is
the platform default (e.g., in our prototype the platform strategy corresponds to the standard
selection algorithm of OpenWhisk) and its invalidate strategy considers a worker label non-usable
when its workers are overloaded, i.e., none has enough resources to run the function.

3 Our Presentation

In our presentation at Microservices 2020, we will provide some introductory notions of the
Serverless paradigm and an overview of the Apache OpenWhisk [1] serverless platform. Then,
we will discuss the APP syntax and semantics. We will give the main technical insights on our
prototype implementation developed as an extensions for OpenWhisk. Finally, we will exhibit a
serverless use case combining IoT, Edge, and Cloud Computing. We will contrast, architecture-
and performance-wise, the use case implemented with APP against a näıve implementation
using the vanilla OpenWhisk stack which, to achieve the same functional requirements, needs
three coexisting installations of the OpenWhisk platform.

2



Allocation Priority Policies for Reliable Serverless Scheduling Performance G. De Palma et al.

References

[1] Apache openwhisk. https://openwhisk.apache.org/, 2019. Online; acc. 04/2020.

[2] AWS. Lambda. https://aws.amazon.com/lambda/. Online; acc. 04/2020.

[3] I. Baldini et al. Serverless computing: Current trends and open problems. In Research Advances in
Cloud Computing, pages 1–20. Springer, 2017.

[4] O. Ben-Kiki, C. Evans, and B. Ingerson. Yaml ain’t markup language (yaml™) version 1.1. Working
Draft 2008-05, 11, 2009.

[5] Google. Cloud Functions. https://cloud.google.com/functions. Online; acc. 04/2020.

[6] J. M. Hellerstein et al. Serverless computing: One step forward, two steps back. In CIDR.
www.cidrdb.org, 2019.

[7] S. Hendrickson, S. Sturdevant, E. Oakes, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Serverless computation with openlambda. login Usenix Mag., 41(4), 2016.

[8] IBM. Cloud Functions. https://www.ibm.com/cloud/functions. Online; acc. 04/2020.

[9] Iron.io. IronFunctions. https://open.iron.io. Online; acc. 04/2020.

[10] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Carreira,
K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson. Cloud
programming simplified: A berkeley view on serverless computing. CoRR, abs/1902.03383, 2019.

[11] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless computing: An
investigation of factors influencing microservice performance. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 159–169. IEEE, 2018.

[12] Microsoft. Azure Functions. https://azure.microsoft.com/services/functions. Online; acc. 04/2020.

3

https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://www.ibm.com/cloud/functions
https://open.iron.io
https://azure.microsoft.com/services/functions

	Introduction
	The APP language
	Our Presentation

