Syn: GitOps on Stereoids with Kubernetes the Swiss Way

Josef Spillner!, Daiana Boruta!, Tobias Brunner?, Simon Gerber?, and Adrian
Kosmaczewski?

! Zurich University of Applied Sciences, Winterthur, Switzerland
{josef .spillner,boru}@zhaw.ch
2 VSHN AG, Zurich, Switzerland

{tobias.brunner,simon.gerber,adrian.kosmaczewski}@vshn.ch

Abstract

Kubernetes has become one of the leading platforms for deploying and operating
microservice-based applications. With its native support for containers and cloud func-
tions, it has strong service scheduling, scaling and isolation features. But deploying to
Kubernetes is a path riddled with stumbling blocks. Syn automates Kubernetes with fully
controlled and secured configuration management for multiple tenants, enabling repro-
ducibility of issues and increasing reliability and flexibility in multi-cloud deployments.

1 Introduction

Application engineers and providers are facing a wide-spread transition to Kubernetes (K8s),
a platform specifically designed for the messaging, elasticity, security and resilience needs of
container-native microservices [3, 9, 10]. Applications deployed on K8s are described as sets
of declarative manifest files referencing containers in private or public container registries as
tangible microservice units. These manifests may be packaged in Helm charts, CNAB files or
TOSCA /Toskose packages, to mention a few representatives of a fast-moving field [2]. These
are non-K8s-native formats requiring further tooling and sometimes K8s extensions, and ac-
cordingly presuppose additional software engineering skills that demand costly training for
ephemeral applicability.

On the operational level, K8s runs clusters of pods along with further resource objects,
including user-defined resources, as logical management units [1]. Pods are wrapping deployed
containers, their lifecycle states and elastic scaling states. Some of the containers have microser-
vices interfaces (in particular cloud functions and operators wrapped as networked containers
[7]) while others constitute non-invokable processes and auxiliary management containers (side-
cars, one-off /init, cron) but are still colloquially called microservices in industry parlance. K8s
has little understanding of the entirety of an application and the semantics of application live-
ness, as it merely manages the constituents objects including the microservices that form the
application core on a syntactic level.

Deploying manifests or packages to Kubernetes without additional DevOps support frame-
works has a number of disadvantages beyond the limited semantic interpretation of applications:
(i) No transactionality, leaving semi-deployed objects in cases of errors; (ii) No immediate tear-
down and replay and thus no reproducibility; (iii) No enforcement of naming policies, tenant
separation, change paths and other operational concerns, revealing great risks and attack vec-
tors from a cyber-security perspective.

Syn combines years of DevOps experience in containerised environments [5] with current
best practices to overcome these limitations. It combines GitOps deployment [6] of K8s object
definitions onto immutable infrastructure, event-triggered K8s operators for increased automa-
tion, multi-cloud deployments, dependencies, secrets management and other security concerns,

Syn: GitOps on Stereoids with Kubernetes the Swiss Way Spillner, Boruta, Brunner, Gerber, Kosmaczewski

as well as monitoring and alerting under one hood. On top, it offers unique concepts not
yet found in any other container management platform with the goals to increase automation,
reproducibility, reliability and flexibility.

In the following sections, we introduce the Syn concepts (Sect. 2), describe its implementa-
tion (Sect. 3), and evaluate the bootstrap and deployment performance (Sect. 4). We explain
the creation of custom components (Sect. 5) before concluding with a look at possible next
steps (Sect. 6).

2 Concepts

Syn itself is based on a microservices composition and introduces four novel concepts beyond
state of the art container management platforms and deployment tools to improve the DevOps
process:

e Bring Your Own Cloud (BYOC) with high modularity and thus flexibility. By specifying
APT endpoints to self-hosted Syn components, engineers can involve their own container
registry or their own secrets management vault into the platform’s workflows. The con-
ventional binary separation between fully provider-managed and self-managed application
platform is thus becoming a more fine-grained set of economic and technical decisions on
a spectrum. Consequently, the concept of loose coupling is propagated from composite
microservice-based applications to the underlying management platform itself, greatly
streamlining the ability to control the deployment and provisioning through commits by
developers. Components and the extensibility they bring to the platform are described in
greater detail in Sect. 5.

e Explicit local mode. Configuration changes can pass a dry run followed by an analysis
of which changes would be transitively propagated to which parts of the system. This
alleviates the need to perform costly rollbacks.

e Strong multi-cloud support. Syn keeps centralised knowledge about an arbitrary number
of K8s clusters running on various IaaS deployments and is aware of version and distri-
bution flavour differences as well as tenants. Microservices are safely deployed with K8s
object manifests generated and customised using this knowledge.

e Hierarchical code-driven development: Multiple Git repositories of various types are man-
aged by Syn. The security of both repositories and application deployments is eased with
internal credentials handling through confidential transit and storage. The breach of one
server, one cluster or one infrastructure cloud provider limits any potential damage to
this realm. In the wake of increasing global damage through cloud intrusions [8], this is
an important property.

With these concepts, Syn supports a combination of multi-cluster and multi-tenant manage-
ment, full GitOps operations, tooling bootstrapping, configuration management and reusable
components, including for automatic maintenance and renovation of components and secrets
management and unified service provisioning within the K8s cluster and across clouds.

The GitOps focus is evident from Fig. 1 that explains the basic entity relationships. Tenants
and clusters are automatically created, and also torn down, through configuration stored in Git
repositories. The current iteration of Syn supports private clusters, offering high isolation to
security-sensitive tenants. A future option is the operation of shared clusters to increase the

Syn: GitOps on Stereoids with Kubernetes the Swiss Way Spillner, Boruta, Brunner, Gerber, Kosmaczewski

—
e o e ;
- [display
Git : | j Name] : : F o
Repo 1 Tenant 1 | Tenant1 | | Tenant2 | u p
*«owns» [tenantRef] tt
Git — Shared Cluster 1 u i
Repo 2 -

|
Private Cluster 1 \ - 1aasS provider [cloud, distribution]
. - location/country [region]
- secrets
Nodes... - other [facts]

Figure 1: System model with tenants, clusters and repositories as main entities

utilisation rate. Moreover, the BYOC and multi-cloud concepts are also represented. Syn may
be instructed to deploy a cluster on the rmal region of the cloudscale provider using the
openshift3 distribution of K8s. Once a cluster is set up, applications can be deployed to it.
Addressing multiple clusters in a federation in a unified way during this deployment is still a
challenge, as tools like kubectl are bound to single clusters. This limitation is increasingly
solved with evolving approaches like KubeFed (Kubernetes Federation v2)! and corresponding
research works on using multiple clusters [4].

3 Implementation

Syn has been implemented as a set of modular, loosely coupled modules and APIs around
existing cloud-native stacks and tools such as Kubernetes (K8s), Kapitan, ArgoCD, Crossplan,
Renovate and Vault as well as GitLab. The integration architecture around the main Syn parts
(Lieutenant API and operator, Steward and Commodore) is shown in Fig. 2. Dashed parts of
the system are not currently implemented but might complement the platform functionality in
future versions.

Delivering a new microservices-based and containerised application means first preparing a
K8s cluster. The preparation starts with registering arbitrary facts with Lieutenant. These
include facts about available machines via Steward and confidential facts such as the machine
SSH key pairs stored in Vault. Lieutenant then provides its inventory to the manifest gener-
ator Commodore via GitLab, creating and curating tenant and cluster repositories as needed.
Commodore pulls all details from Git repositories to build the consolidated cluster catalogue,
taking hierarchical configuration overrides (from tenant over cluster to the application level)
into account. The build is then triggering the continuous delivery of the managed application
on K8s through ArgoCD, adding externally managed services through Crossplane as needed.
Eventually, the containerised application is deployed in a cloud-native way, exploiting the ca-
pabilities of both the K8s cluster and external infrastructure through appropriate distribution
of containers and bindings to stateful services such as databases and message brokers.

Syn, named after the Swedish word for vision, is developed as open source project (docu-
mented at http://syn.tools) by VSHN AG, a DevOps company responsible for the multi-
cloud hosting of customers on more than 15’000 machines with approximately 85’000 concur-

1KubeFed: https://github.com/kubernetes-sigs/kubefed

http://syn.tools
https://github.com/kubernetes-sigs/kubefed

Syn: GitOps on Stereoids with Kubernetes the Swiss Way Spillner, Boruta, Brunner, Gerber, Kosmaczewski

[data | [
APl token + i C> K8s Operators . (Facts)y, InfluxDB |

server SSH A TTTaNTo o 7: Inventory Timeseries |
_________){ «Lieutenant» ’ S e ERRe L

keys h 4
R . REST BN
{ DevOps Engineer (openapl) Inventory API+Operator - —
... A Store | o

Retrieve
* Secrets
\

___________ 0," : L"Vte”m"y v Secrets Secret Store
----- GitLab Sewp { (B L s
Global / Common Config ! %, Register % ! Harbor :
~ %, SSH keys & machine information o L _
. . + 1 Curated Images™ :
. Kapitan Manif Mgmt| ., e RLEEE R LR
. «Steward» Deployment B ,

Tenant and) pull ™., «Commodore» | cluster Agent Reconcil : Pull f
. Git | F-----------x & , _lation H images,”
Cluster Config Config Generator T .
repos K : H .
 — El L+push A
(fede e : EEUUUCELLLE -a| Argo CD &
Components . H RSPt Pull GitOps . -
. rated) -)
Config (many) Joct
Create L frmm - = H
zngeests ¥ __=:="' + K8up Crossplane A Infrastructure Services
Jupdate,*” Cluster Catalog 222°7 : 1 Backup H Multicloud] (many)
/ ToottTrrTTw N A
H Commodore e S e -, Provision
| Components ! Insights P nlets
K + Full Stack H i+ Client Proxy H
S k.) e e e e e e e)

«Renovate» CLItool | __..- --°" Update Automated Machine Operation
Dep. Maintenance Containerised
[Kubernetes Cluster Microservices/Apps

Figure 2: Syn integration architecture based on Kubernetes ecosystem components

rently running managed services. Customers choose to be switched to Syn at their own pace.
While still under development, the first customers have proven the concepts of Syn in produc-
tion on multiple clouds since April 2020, and Kubernetes fleets of increasing size are managed
by Syn with reduced effort.

4 Evaluation

We demonstrate the degree of automation and reproducibility with a scenario. The procedure
follows the instructions of Getting Started with Project Syn® and further automates them,
reducing some of the choices to a sensible default in an evaluation context. The time to deploy
an application is measured repeatedly and the predictability of the timing is determined. The
reproducibility is checked by a combination of cleaning the environment (deleting Lieutenant
objects that tear down the Git repositories, an deleting the cluster) as well as idempotency
policies (image-pull-policy=Always in K8s). All experiments are conducted on a virtualised
Intel Core (Broadwell) processor with 2400 MHz and 2 GB RAM atop a K3d-managed K3s
instance, a lightweight distribution of K8s.

Fig. 3 shows the performance of bootstrapping Syn before and after attachment to the Git
repositories. The total average time for bootstrapping is 94.3 s and includes the K8s cluster
setup, the deployment of the ingress controller and the Lieutenant API deployment. Running
Lieutenant to set up the repositories and Commodore to build and push the catalogue brings
the total average time to 140.3 s. Kickstarting Steward to get the Syn instance GitOps-manage
and to serve ArgoCD eventually leads to a significant increase and a total average time of
306.6 s.

Most bootstrapping steps show a stable performance, although the busy-waiting loops for
the deployment of the Traefik ingress controller via Helm chart and ArgoCD are subject to
both maximum slowness and deviation. Optimising these two phases could save almost 70% of

2Getting Started tutorial: https://syn.tools/syn/tutorials/getting-started.html

https://syn.tools/syn/tutorials/getting-started.html

Syn: GitOps on Stereoids with Kubernetes the Swiss Way Spillner, Boruta, Brunner, Gerber, Kosmaczewski

175
150
1

125

100
o]

75 1

50
o]

25 d %
. ==
0 -
cluster+operator ingress-busywait api api-busywait lieutenant commodore steward/argocd

Figure 3: Measurement of deployment times (in s)

the overall readiness time. Traefik for instance is only required for K3s and can be eliminated
for Minikube. As K8s distributions evolve, the extent of necessary pre-configuration of the base
container platform still needs to be determined.

The scripts and reference data to reproduce the evaluation are available through Renku?®.

5 Custom Components

To perform GitOps at scale, as in any software development process it is necessary to foster
reuse and parameterisation. Commodore components, an IaC abstraction over K8s manifest
contents, are used to inject additional content through the compiled configuration catalogue.

While Commodore understands tenants and clusters natively, it can be taught other con-
cepts through such custom components. Components are described with the Jsonnet template
language along with variable substitutions and functions described in YAML files. Alternatives
such as Jinja2, Kadet and Helm are also supported. Components access the inventory of Kap-
itan, underlying Commodore, and subsequently modify arbitrary configuration values in the
hierarchy which are then reflected in the resulting K8s manifests. An representative component
is the OpenShift 4 Registry. It creates a namespace object whose annotations include network
policy labels depending on whether or not this was configured in the inventory. Other com-
ponents exist for handling storage classes, modifying network policies, adding the K8s metrics
server, Prometheus monitoring adapters and other cross-cutting functionality. A guide on how
to create custom components is available online®.

3Renku Collaborative Data Science: https://renkulab.io/projects/js.zhaw/syn-experiments
4Commodore components: https://syn.tools/commodore/writing-a-component.html

https://renkulab.io/projects/js.zhaw/syn-experiments
https://syn.tools/commodore/writing-a-component.html

Syn: GitOps on Stereoids with Kubernetes the Swiss Way Spillner, Boruta, Brunner, Gerber, Kosmaczewski

6 Conclusions and Future Work

Syn can be considered one of the most comprehensive frameworks for allowing GitOps at scale
under real-world conditions where tenants need to be separated and tenant preferences (cloud
provider X, configuration flag Y, Kubernetes extension Z) need to be considered. By automating
these changes in a declarative manner without ad-hoc manual changes per cluster, Syn achieves
both reproducibility and immutable infrastructure goals. The ability to administer multiple
Kubernetes clusters in sync further contributes to increased reliability.

In the future, we plan to take the idea further towards predictable deployments through a-
priori configuration checks, transactional rollouts (and rollbacks) of configuration, microservice
quality examination and attestation-based container management.

References

[1] David Balla, Csaba Simon, and Markosz Maliosz. Adaptive scaling of Kubernetes pods. In NOMS
2020 - IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, April
20-24, 2020, pages 1-5. IEEE, 2020.

[2] Matteo Bogo, Jacopo Soldani, Davide Neri, and Antonio Brogi. Component-aware Orchestra-
tion of Cloud-based Enterprise Applications, from TOSCA to Docker and Kubernetes. CoRR,
abs/2002.01699, 2020.

[3] Victor Medel Gracia, Unai Arronategui, José Angel Banares, Rafael Tolosana, and Omer Rana.
Modeling, Characterising and Scheduling Applications in Kubernetes. In Karim Djemame, Jérn
Altmann, José Angel Banares, Orna Agmon Ben-Yehuda, and Maurizio Naldi, editors, Economics
of Grids, Clouds, Systems, and Services - 16th International Conference, GECON 2019, Leeds,
UK, September 17-19, 2019, Proceedings, volume 11819 of Lecture Notes in Computer Science,
pages 291-294. Springer, 2019.

[4] Jiaming Huang, Chuming Xiao, and Weigang Wu. RLSK: A Job Scheduler for Federated Ku-
bernetes Clusters based on Reinforcement Learning. In 2020 IEEFE International Conference on
Cloud Engineering, IC2E 2020, Sydney, Australia, April 21-2/4, 2020, pages 116-123. IEEE, 2020.

[5] Hui Kang, Michael Le, and Shu Tao. Container and Microservice Driven Design for Cloud In-
frastructure DevOps. In 2016 IEEE International Conference on Cloud Engineering, IC2E 2016,
Berlin, Germany, April 4-8, 2016, pages 202—211. IEEE Computer Society, 2016.

[6] Thomas A. Limoncelli. GitOps: a path to more self-service IT. Commun. ACM, 61(9):38-42,
2018.

[7] Hias Mavridis and Helen D. Karatza. Combining containers and virtual machines to enhance
isolation and extend functionality on cloud computing. Future Gener. Comput. Syst., 94:674-696,
2019.

[8] Md. Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman. XI Command-
ments of Kubernetes Security: A Systematization of Knowledge Related to Kubernetes Security
Practices. CoRR, abs/2006.15275, 2020.

[9] Josef Spillner and Daiana Boruta. Kubernetes Literature Dataset. Dataset v0.2, Zenodo, DOI:
10.5281/zenodo.3517806, October 2019.

[10] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and Ferhat Khendek. Deploying
Microservice Based Applications with Kubernetes: Experiments and Lessons Learned. In 11th
IEEE International Conference on Cloud Computing, CLOUD 2018, San Francisco, CA, USA,
July 2-7, 2018, pages 970-973. IEEE Computer Society, 2018.

	Introduction
	Concepts
	Implementation
	Evaluation
	Custom Components
	Conclusions and Future Work

