
Microservices and curricular education

Tullio Vardanega1 and Riccardo Cardin1
1 Department of Mathematics, University of Padua, Italy
tullio.vardanega@unipd.it, rcardin@math.unipd.it

Abstract

Frequently enough, one tends to think that his or her professional qualifications are
solely the product of one’s own work experience, void of traceable relation to curricular
education. While this stance may reflect rightful frustration with curriculum instructors
and teaching programs (as in “learning to read”), it is fundamentally flawed. Personal
maturity, prerequisite of professionalism, rests on education and consolidates
harmoniously with experience (as in “reading to learn”). Sure enough, breakages may
well occur between curriculum design and professional competence, unfortunately. More
frequently so where the knowledge domain evolves fast, faster than curriculum design
may coalesce adaptively around it.

Where does the knowledge of microservices stand within the instructional design of
university-level Computer Science curricula? This short paper reflects on this question,
drawing from the experience of instructors deeply immersed in the professional practice.

1 Introduction
One of the challenges with the shaping of curricular education is to decide where to place the border

between the learning outcomes of the curriculum design and the coverage that they should have of the
advancement of the corresponding knowledge and state of practice. As science evolves, so does – with
a variable lag – the state of practice. It stands to reason that the learning outcomes of curricular education
should also advance accordingly.

Such an advancement, however, is not an easy matter, however, in several respects, which is where
the challenge arises. The first and foremost difficulty is that a curriculum is a fixed-size container: if
you want to fill it beyond capacity, all you will get is wasteful, if not outright disconcerting, overflow.
In truth, what is fixed-size in the curriculum-container is the duration of the education cycle: the
learning outcomes achieved across it might naturally evolve if the student’s initial knowledge base
progressed over time. In other words, a static zero-base of curricular education allows the instructional
design to set in an equally static mode and content itself with transmissive teaching* only. That route is
bound to cause the gap between curricular education and “the world out there” to widen frustratingly.

* Modern pedagogy categorizes teaching into transmissive, transactional, and transformative. Its body of knowledge

recommends instructors to shift from left (transmissive) to right (transformative) in their instructional design.

Defeating this trend is not an easy endeavor. Success depends on a combination of factors: the
instructor, the class scope, and the teaching institution.

This introduction, somewhat askew from the scope of this conference, serves the purpose of arguing
that the thriving of the microservices paradigm in the state of practice depends also on the extent to
which the associated knowledge enters the learning trajectory of curricular education. This short paper
presents some reflections on that issue, concentrating on one of the three opportunities that instructors
may encounter in a Computer Science curriculum at university level. Such three opportunities are: (1)
software engineering projects for bachelor students, which may well be precursors to internships on the
same theme; (2) exploratory assignments for master students; (3) end-of-study projects for master
graduate candidates. Whereas opportunity (3) may occasionally be as rewarding as in (Vardanega &
Simioni, 2018), and opportunity (2) may cause prerequisite interest to arise, this paper focuses on (1),
which has the highest potential for harvest at the earliest possible exit of the education path.

2 Setting the scene: understanding microservices
Arguably, the microservices style is the tip of the history of software architecture and programming

to date. It evolves from the initial monoliths, through the Service-Oriented Architectures (The Open
Group, 2013), and is itself the precursor to the cutting-edge Serverless pattern (Fowler, 2018).

Teaching the rationale of the microservices architecture – over and above its technological
incarnation – and what its concept entails is hard as it requires understanding that illness that it aims to
cure. The hurdle is that this architectural style intimately relates to people’s organization and
relationships, which you must have experience of to appreciate properly.

Like any other software engineering pattern, the microservices architecture addresses a specific
problem. For the microservices, it is the handling of dependencies among the components of enterprise
applications. Often enough, such applications cover sizeable spans of the enterprise business processes,
with large groups of heterogeneous professionals working on individual parts of them or on their overall
aggregate. In such situations, the need arises to coordinate those work groups, which include software
developers, business experts, database administrators, infrastructure managers, and other specialized
profiles. The more transversal the application, the more diverse, composite and numerous the work
group. Experience says, however, that there is a strict upper bound on how many people one can
coordinate efficiently. Amazon CEO’s rule of thumb, for one, is that, no matter how large your
organization gets, individual teams should not be larger than what two pizzas can feed. The consequent
best practice is to divide the application and the organization in small-sized groups, for easier
management of both people and software components.

This ramification reflects the fact the microservices architecture concept very much relates to the
Domain-Driven Design theory (Evans, 2010). More specifically, it is a punctual concretization of the
notion of bounded context, perhaps the most effective means to date to tame organizational complexity.

3 Learning opportunities at CS bachelor level

3.1 Hazards
The first hurdle in exposing Computer Science bachelor students to microservices is that the

preconditions for the use of such a structural practice to become measurably valuable simply cannot
hold. There is pressure from the number of students who can take part in a collaborative educational
project, which cannot grow freely. Likewise, there is pressure from the complexity of the domain model
that the product of that project can have, which can only mirror reality from some distance.

For student groups of canonical size†, it is highly likely that the same group (as opposed to separate
sub-groups) will jointly develop all microservices. Unfortunately, engaging the same developers across
distinct microservices shortcuts the critical aspects of their architectural composition, i.e., data and
failure isolation, organization of persistence, communication. Not surprisingly, therefore, students tend
to mistake the “distributed monolith”, which is the frequent product of their eventual implementation,
with a true microservices application. It is also not rare that the students initially fall in the anti-pattern
of “nanoservices”, legacy of their naïve understanding of Object Oriented Programming. That defect is
comparatively easier for students to see and evade than the bigger issues at stake at architectural level.

In addition to those shortcomings, the students’ learning of microservices in any such setting cannot
possibly extend to production‡. Regrettably, this limitation keeps students away from experiencing the
hardship of it, where microservices architectures expose the flank to fundamental vulnerabilities far
more fiercely than they can do during development. API availability, performance bottlenecks,
communication overheads, distributed transactions are the traits of a microservices architecture most
liable to operational breakdowns when the system faces unexplored scenarios.

To an external observer of university education, this deficit might perhaps seem like a fundamental
flaw in the instructional design of such projects. Yet, the whole body of literature in this field shows
that there is no plausible room, for span of assignment, level of complexity, and – last but not least –
attractiveness of challenge§, to address that problem area in a single (horizontal) curriculum. Vertical
internships may get nearer to operation, but only just, and always contingent on rare combinations of
opportunity (at the host) and inclination (of the intern).

3.2 Learning outcomes
Setting expectations right is one of the most difficult tasks in the mandate of instructors. At present,

the decision as to whether to expose students to microservices at some point in the bachelor curriculum
is more frequently the privilege of a single instructor than a transversal priority of the faculty. In other
words, it is an optional plus and not an obligatory must. Instructors using that privilege soon come to
realize that the most plausible (and certainly valuable) learning outcome for students from it, is the
familiarization with the technology challenge and solutions that underlie microservices architectures,
possibly in relation with the principles of Continuous Delivery / Continuous Integration.

Setting goals much beyond it, is likely ill founded. More bluntly: expecting students to understand
Domain-Driven Design (DDD) is foolishly erroneous. DDD is a truly complex field in itself, which can
be approached soundly only with a profound understanding of the management of dependency between
business and software components. For students who have just recently encountered the principles of
Object Oriented Programming, and still struggle at scratching under the mere syntactic surface of it, it
is unfair to pretend that they can have the sensitivity to understand how the DDD works at its heart, and
divide a complex business model into smaller and well-defined bounded contexts.

4 Conclusions
The reader may have the impression that our drive in this short paper is to maintain that teaching

microservices to bachelor students in a generalist Computer Science curriculum is inane. That is not
our conclusion. Several parts of curricular education do not allow full and direct practice. They

† Common pedagogical practice suggests that the size of student teams for such project should be 6-7 peers, at the high end

of Bezos’ two pizzas.
‡ Students do not eat their own food (a luxury very unlike professional life). In a university curriculum, project engagement

necessarily ends with “product” release and never encounters real operation-and-maintenance issues.
§ Human (and therefore student) nature is such that, in general, there is more creative pleasure in doing from scratch than in

fixing the leftovers of others.

consequently lack an epiphany of understanding that be synchronous with classwork. The important
thing, however, is that the corresponding learning mature in the students past their transition into adult
life, and come to a deferred epiphany when the problem faced in the profession associates with
situations evoked in classwork. One of the ingredients that favor deferred epiphany is linking class-time
concepts with real-world situations, more or less patent or profound. Encountering and recognizing the
latter will likely fire the association and cause epiphany. The ambit of microservices has many traits
that make the link with real-world needs very apparent, and therefore warrants sowing the seed of it in
the bachelor curriculum of Computer Science.

References
Evans, E. (2010). Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-

Wesley.
Fowler, M. (2018, May 22). Serverless Architectures. Retrieved from martin.Fowler.com:

https://martinfowler.com/articles/serverless.html
The Open Group. (2013). What is SOA? Retrieved from The SOA Source Boook:

https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-
book/soa/soa.htm

Vardanega, T., & Simioni, A. (2018). In Pursuit of Architectural Agility: Experimenting with
Microservices. IEEE International Conference on Services Computing, SCC 2018, (pp. 113-
120). San Francisco, CA.

