
Ballerina and Jolie: Connecting Two Frontiers of

Microservice Programming

Anjana Fernando1, Saverio Giallorenzo2, Claudio Guidi3, Sameera Jayasoma1,
Balint Maschio4, Jacopo Mauro2, Fabrizio Montesi2, Marco Montesi5, Marco

Peressotti2, Matthias Dieter Wallnöfer6, and Lakmal Warusawithana1

1 WSO2
2 University of Southern Denmark

3 italianaSoftware s.r.l.
4 Pixis co.

5 Teamsystem SpA
6 Technologische Fachoberschule “Max Valier” Bozen

1 Introduction

Cloud Computing and containerization are changing the way we conceive software artefacts.
In the last years, they had a big impact at the infrastructure level, by facilitating the offer of
virtual computational resources both in the form of virtual machines and containerization. In
particular, containerization technologies offer an abstraction of computational resources that is
no more related to the idea of a machine.

Containers facilitate the adoption of different technologies in a cloud environment, which
has motivated the application of different tools and languages for each specific microservice.
Nevertheless, in the programming of microservices, some common aspects always emerge, in-
dependently of the specific microservice that is being developed. These aspects include, for
example, the programming of communications, monitoring, fault management, and architec-
tural patterns (like API gateway).

Over the years, the teams behind the programming languages Ballerina [2] and Jolie [3]
have developed linguistic primitives to deal with these aspects. The starting point of our
presentation is: while the two languages have been developed independently, many of their
features are strikingly similar. This realisation came out of a recent meeting between the two
teams, and inspires the question:

Is it a coincidence, or are we facing a new generation of programming languages?

We outline what we will discuss in our presentation.

• The common programming concepts for microservice programming that we have identified
in Ballerina and Jolie, and how they connect to previous work. For example, these
concepts are strongly linked to established notions in computer science (like process calculi
and types) [10, 16, 17, 9] and computer engineering (like programming in the large versus
programming in the small and workflows) [5, 15, 18].

• How these programming concepts are supported linguistically by Ballerina and Jolie.

• Engage with the audience on our previous question.

We give an overview of the identified programming aspects in the next section.



Ballerina and Jolie: Connecting Two Frontiers of Microservice Programming A. Fernando et al.

2 Microservice programming concepts

We list the concepts of microservice programming that we will present. These concepts support
the overarching concern that microservice languages should aid in the analysis and understand-
ing of complex systems.

Service orientation Services are native constructs, and services can be compositions of other
services [4, 13].

Communication primitives Communication actions (like send and receive) are supported
by native primitives [4, 12].

Manifest workflows The workflows enacted by a service are made explicitly manifest by the
language [6, 11].

Access points The access points by which a service can receive messages are declared explic-
itly [4, 13].

Dependencies The dependencies of a service on other services are declared explicitly [13].

APIs Access points and dependencies are typed with interfaces that include the types of mes-
sages that can be exchanged [4, 13].

Message types and values Types and values are designed with network transmission in
mind (marshalling/unmarshalling) [8, 13].

Interoperability Interoperability with other technologies over network communications and
different transport protocols is a first-class citizen [1, 11].

Architectural design extraction The overall architecture of a complex microservice system
should be automatically extractable.

Architectural programming Common architectural design patterns like proxy-based access
control are natively supported [14].

Built-in observability A service always offers a way to monitor their states and the actions
that they perform, also remotely [7].

2



Ballerina and Jolie: Connecting Two Frontiers of Microservice Programming A. Fernando et al.

References

[1] Ballerina HTTP module. https://ballerina.io/learn/api-docs/ballerina/http/index.html, 2020.

[2] Ballerina website. https://ballerina.io/, 2020.

[3] Jolie website. https://jolie-lang.org/, 2020.

[4] J. Clark, S. Weerawarana, and H. Aravinda. Ballerina Language Specification, 2020R1.
https://ballerina.io/spec/lang/2020R1/, 2020.

[5] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-the-small. IEEE
Trans. Software Eng., 2(2):80–86, 1976.

[6] A. Fernando. Making Sequence Diagrams Cool Again. https://hackernoon.com/rethinking-
programming-making-sequence-diagrams-cool-again-6z1p3yv9, 2020.

[7] A. Fernando. Rethinking Programming: Automated Observability.
https://hackernoon.com/rethinking-programming-automated-observability-dn14p3yxb, 2020.

[8] A. Fernando. Rethinking Programming: Network-Aware Type System.
https://hackernoon.com/rethinking-programming-network-aware-type-system-8o7x3yh6, 2020.

[9] F. Leymann and D. Roller. Modeling business processes with BPEL4WS. Inf. Syst. E-Business
Management, 4(3):265–284, 2006.

[10] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980.

[11] F. Montesi. Process-aware web programming with Jolie. Sci. Comput. Program., 130:69–96, 2016.

[12] F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro. JOLIE: a java orchestration language inter-
preter engine. Electron. Notes Theor. Comput. Sci., 181:19–33, 2007.

[13] F. Montesi, C. Guidi, and G. Zavattaro. Service-Oriented Programming with Jolie. In A. Bouguet-
taya, Q. Z. Sheng, and F. Daniel, editors, Web Services Foundations, pages 81–107. Springer, 2014.

[14] F. Montesi and J. Weber. From the decorator pattern to circuit breakers in microservices. In
H. M. Haddad, R. L. Wainwright, and R. Chbeir, editors, Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018, pages 1733–1735.
ACM, 2018.

[15] C. Pautasso and G. Alonso. Jopera: A toolkit for efficient visual composition of web services. Int.
J. Electron. Commer., 9(2):107–141, 2005.

[16] B. C. Pierce and C. Benjamin. Types and programming languages. MIT press, 2002.

[17] W. M. P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, 18th International Conference, ICATPN ’97, Toulouse,
France, June 23-27, 1997, Proceedings, volume 1248 of Lecture Notes in Computer Science, pages
407–426. Springer, 1997.

[18] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
patterns. Distributed Parallel Databases, 14(1):5–51, 2003.

3

https://ballerina.io/learn/api-docs/ballerina/http/index.html
https://ballerina.io/
https://jolie-lang.org/
https://ballerina.io/spec/lang/2020R1/
https://hackernoon.com/rethinking-programming-making-sequence-diagrams-cool-again-6z1p3yv9
https://hackernoon.com/rethinking-programming-making-sequence-diagrams-cool-again-6z1p3yv9
https://hackernoon.com/rethinking-programming-automated-observability-dn14p3yxb
https://hackernoon.com/rethinking-programming-network-aware-type-system-8o7x3yh6

	Introduction
	Microservice programming concepts

