
Migrating Monolithic Applications to Microservices-based

Customizable Multi-tenant Applications

Sindre Grønstøl Haugeland1, Phu H. Nguyen2, Franck Chauvel2, and Hui Song2

1 University of Oslo, Oslo, Norway
sindrgro@ifi.uio.no

2 SINTEF, Oslo, Norway
firstname.lastname@sintef.no

Abstract

Software providers have a myriad of legacy monolithic single-tenant software running
on client infrastructure. Migrating legacy software to a multi-tenant cloud solution requires
a structured and planned approach, in a context with no defined best practices on how
to achieve this. This paper suggests an approach for how software providers can migrate
legacy software to the cloud, providing customers with a flexible customization possibility,
while taking advantage of the economics of scale that the cloud and multi-tenancy provide.

1 Our Migration Approach

Our approach focuses on migrating applications that follow the MVC design pattern. It draws
inspiration from the migration approach proposed by E.Wolff [8] in a survey about migration
approaches, and the generic re-engineering tool in [4]. Modifying the Blueprint approach to
include the initial phase of the proposed tool by Kazman allows the migrating party to gain
an understanding of the current application before starting the migration. The approach be-
comes a three-phased approach, where the initial phase consists of analyzing the application
and discovering bounded contexts and domains in the application according to domain-driven
principles [1]. The next two phases occur in parallel, where we extract functionality from the
existing application while building the necessary infrastructure to support the new services.

To test the approach, we applied it to the SportStore application [2]. The application follow-
ing the MVC pattern [2] is a web-based store for sports equipment. SportStore is implemented
in .NET Core with Views, Models, and Controllers for ordering, product catalogs, and a session-
based shopping cart. We use these “groupings” as our bounded contexts during the analysis
and extract functionality from them during the decomposition part of the migration. After
this, we start implementing services to cover the functionality of the existing application and
set up the infrastructure to support it. The infrastructure includes typical components like the
API-gateway and a form of back-end communication for the services. Figure 1 shows the target
architecture of the SportStore application that we have used for our migration experiments.

2 Multi-tenancy and Deep Customization

Our approach aim at enabling the target architecture to be customizable for multi-tenant con-
text as presented in [5, 6]. The approaches in [5, 6] offer tenants a way to (deeply) customize
the functionality of the multi-tenant application without interfering with behavior for other
tenants. The customization-driven aspect make our approach different from other migration
approaches like [7]. First, we focus on introducing multi-tenancy to the application. To sup-
port multi-tenancy, we need a system for Identity Access Management (IAM), and to support



Migrating Monolithic Applications to Microservices Architecture Haugeland, Nguyen, Chauvel and Song

Figure 1: The target architecture with customization possibility in a multi-tenant context

customization of the application for the tenants and to configure the storage to isolate tenant
data, we need a tenant manager. The tenant manager provides all the registered customizations
and endpoints for the logged-in user, which is retrieved using a bearer token issued by the IAM
system. Tenant isolation at application level is crucial to avoid data leaks problem between
tenants as raised in [3]. With the tenant manager and the IAM system in place, we start
adding support for customization. We use the tenant manager to return external endpoints to
customized functionality in cooperation with the IAM system to ascertain the “tenantID” of
the user. The main service then reroutes the request to the external endpoint along with the
information required by the customized function.

References

[1] Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-Wesley
Professional, 2004.

[2] Adam Freeman. Pro Asp. net Core Mvc. Apress, 2016.

[3] Andrei Furda, Colin Fidge, Alistair Barros, and Olaf Zimmermann. Chapter 13 - reengineering
data-centric information systems for the cloud – a method and architectural patterns promoting
multitenancy. In Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, and Bruce Maxim, editors,
Software Architecture for Big Data and the Cloud, pages 227 – 251. Morgan Kaufmann, 2017.

[4] R. Kazman, S. G. Woods, and S. J. Carriere. Requirements for integrating software architecture and
reengineering models: Corum ii. In Proceedings Fifth Working Conference on Reverse Engineering
(Cat. No.98TB100261), pages 154–163, 1998.

[5] Phu H. Nguyen, Hui Song, Franck Chauvel, Roy Muller, Seref Boyar, and Erik Levin. Using
microservices for non-intrusive customization of multi-tenant saas. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, page 905–915, New York, NY, USA, 2019.

[6] Hui Song, Phu H Nguyen, and Franck Chauvel. Using microservices to customize multi-tenant saas:
From intrusive to non-intrusive. In Joint Post-proceedings of the First and Second International
Conference on Microservices (Microservices 2017/2019), 2020.

[7] Davide Taibi and Kari Systä. From monolithic systems to microservices: a decomposition framework
based on process mining. In 8th International Conference on Cloud Computing and Services Science,
CLOSER, 2019.

[8] Eberhard Wolff. Migrating monoliths to microservices: A survey of approaches. 2019.

2


	Our Migration Approach
	Multi-tenancy and Deep Customization

