
Programming Microservice Choreographies:
a security use case

Saverio Giallorenzo1, Fabrizio Montesi1, Marco Peressotti1, and Luisa Zeppelin2

1 University of Southern Denmark
2 University of Hamburg

1 Introduction  Legend 

Coordination code
(compiled)

Local code 
(written by
programmers)

Choral Choreographies

Compiler

Figure 1: The Choral compiler generates
compliant-by-construction coordination librar-
ies (yellow boxes) for each microservice involved
in a choreography. The implementor of each
microservice can then combine its respective co-
ordination library with the local implementation
of the core functionalities of the microservice
(gray boxes).

To be effective, microservices typically co-
ordinate with one another by following cho-
reographies, i.e., coordination plans based on
message passing [1, 6, 4]. Choreographic Pro-
gramming is an emerging paradigm for the pro-
ductive and correct implementation of choreo-
graphies, where choreographies are specified
as software artifacts from a global viewpoint,
and then a compiler automatically translates
them to sets of compliant endpoint implement-
ations [3]. In this setting, compliance means
that when all endpoints are run together, they
interact exactly as defined by the initial cho-
reographies.

The Choral language (choral-lang.org) has
been recently proposed as the first choreo-
graphic programming language that can be
adopted in the mainstream [2] (Figure 1). In
Choral, choreographies are written in an ex-
tension of Java where objects can be collabor-
atively implemented by multiple roles (the participants of the choreography), and then a Java
library that implements each role is automatically generated (in the future, Choral will support
different target languages). These Java libraries can then be used in the implementation of a
microservice system, to ensure that all microservices will communicate correctly, i.e., accordingly
to the choreographies that have been agreed upon.

In this presentation, we will give a brief overview of the paradigm of choreographic pro-
gramming and its incarnation in Choral. Then, we will illustrate how Choral can be applied
to the programming of microservices in practice, by exploring an implementation of a security
protocol—a multiparty distributed authentication protocol.

2 Choral and the Example

The key idea of Choral is to extend Java’s data types to role parameters. Thanks to this
extension, a choreography can be represented as an object in Choral.

As a simple example to grasp the basics of Choral, consider the following class HelloRoles,
which defines a choreography for two roles A and B.

https://choral-lang.org


Programming Microservice Choreographies: a security use case S. Giallorenzo et al.

1 class HelloRoles@(A, B) {
2 public static void run(SymChannel@(A,B)<String> channel) {
3 String@A a = "Hello from A"@A;
4 String@B b = channel.com(a);
5 System@B.out.println(b); }}

Choral Code

Class HelloRoles is parameterised over the roles A and B, denoted by the notation @(A, B).
The class defines a simple choreography in method run, which takes as parameter a bidirectional
channel between the two roles. Notice how, differently from Java, each variable and string
literal is located at a role by the @-notation. Line 3 assigns the string "Hello from A" located
at A ("Hello from A"@A) to variable a of type “String at A” (String@A). Then, Line 4 uses the
communication method (com) of channel to transfer the string in a to B, which stores it in
variable b. In Line 5, B prints the received value.

The distributed authentication protocol that we will present is inspired by OpenID [5]. In
the protocol, an IP (“Identity Provider”) authenticates a Client to access a third-party Service.
We can codify the protocol as the Choral class below. The syntax expr >> o::m is a shorthand
for o.m(expr) (Choral borrows the forward chaining operator from F#).

1 public class DistAuth@(Client, Service, IP){
2 private TLSChannel@(Client, IP)<Object> ch_Client_IP;
3 private TLSChannel@(Service, IP)<Object> ch_Service_IP;
4 public DistAuth(...) { ... } // omitted
5 private static String@Client calcHash(String@Client salt, String@Client pwd) { ... } //omitted
6
7 public AuthResult@(Client, Service) authenticate(Credentials@Client credentials) {
8 String@Client salt = credentials.username
9 >> ch_Client_IP::<String>com >> ClientRegistry@IP::getSalt >> ch_Client_IP::<String>com;

10 Boolean@IP valid = calcHash(salt, credentials.password)
11 >> ch_Client_IP::<String>com >> ClientRegistry@IP::check;
12 if (valid) {
13 /* IP sends an authentication token to both Client and Service */
14 } else {
15 /* IP sends a failure message to both Client and Service */
16 }
17 } }

Choral Code

Method authenticate (lines 7–17) is the entry point and consists of three phases. In the
first phase, lines 8–9, the Client communicates its username to IP, which IP uses to retrieve the
corresponding salt in its local database ClientRegistry; the salt is then sent back to Client.
The second phase (lines 10–11) resolves the authentication challenge: Client computes its hash
with the received salt and its locally-stored password, and sends this to IP; IP then checks
whether the received hash is valid, storing this information in its local variable valid. The
result of the check is a Boolean stored in the valid variable located at IP. In the third phase
(lines 12–16), IP decides whether the authentication was successful or not by checking valid. In
both cases, IP informs the Client and the Service of its decision. In case of success, IP sends
to the others an authentication token that they can use for further interactions (we omit the
code for creating and sending the token).

For more details, the interested reader can consult the Choral website, where a full version
of this example is also given: https://choral-lang.org.

2

https://choral-lang.org


Programming Microservice Choreographies: a security use case S. Giallorenzo et al.

References
[1] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.

Microservices: Yesterday, today, and tomorrow. In M. Mazzara and B. Meyer, editors, Present and
Ulterior Software Engineering, pages 195–216. Springer, 2017.

[2] S. Giallorenzo, F. Montesi, and M. Peressotti. Choreographies as objects. CoRR, abs/2005.09520,
2020.

[3] F. Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen, 2013.
http://www.fabriziomontesi.com/files/choreographic_programming.pdf.

[4] Object Management Group. Business Process Model and Notation.
http://www.omg.org/spec/BPMN/2.0/, 2011.

[5] OpenID Foundation. OpenID Specification. https://openid.net/developers/specs/, 2014.
[6] W3C. WS Choreography Description Language. http://www.w3.org/TR/ws-cdl-10/, 2004.

3

http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.omg.org/spec/BPMN/2.0/
https://openid.net/developers/specs/
http://www.w3.org/TR/ws-cdl-10/

	Introduction
	Choral and the Example

