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Abstract

Microservices are independent, fine-grained, cohesive software components that com-
municate via message passing. They have been particularly successful to refactor large
service applications in order to improve their scalability. Here we propose a process alge-
braic framework for formally reasoning on the composition of microservices. In particular,
given a microservice system, we can analyse its communication schema and synthesise the
corresponding orchestrators.

1 Introduction

Microservices are the current incarnation of the Service Oriented Computing (SOC) paradigm [3].
The SOC principle is to build applications by composing loosely coupled units (services), made
available over the network. The microservices architecture [10] pushes the idea further by
reducing the size of services into the smallest independent units that implement some related
functionalities (cohesion). Microservices do not share memory and can only interact via message
passing (service invocation), also synchronously (request-response).

The realisation of distributed application involves (micro)service interaction to exchange
data. There are two mainstream approaches to (micro)service composition, called orchestration
and choreography [15]. Orchestration is about describing and executing a single view point
model: a central server takes care of invoking the services and collecting their outcomes. The
analogy is with the conductor who centrally controls the musicians in an orchestra.

Choreography is instead about describing a global model of the interactions between peers:
as such a choreography is not executable, but, via endpoint projections, it is possible to derive
correct-by-design executable implementations (multi-party session types [11] and choreographic
programming [13]). The analogy is with the dancers who behave autonomously, but follow their
parts in the choreography

The above features of microservices require programming languages whose design has been
targeted to microservices aggregation. One prominent example is Jolie [14, 1]. It offers an
imperative core enriched with constructs for distribution and communication, whose semantics
is formalised as a process calculus.

Here, we take a slightly different perspective to microservice composition, by allowing mul-
tiparty interaction abstractions as atomic activities, to be executed in the whole, similarly
to [9]. We believe that in many situations this is a much more convenient abstraction for the
programmer than the classical binary interaction, because it allows focussing on the overall com-
munication logic of those atomic steps and not on the coordination of all low-level interactions.
The overall idea is to have a formal model that allows designers of microservices architectures
to logically reason on transactions and their communication properties. In particular, it is
important to understand the security challenges posed by the microservice paradigm.
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Our proposal, called microlink, builds on the link-calculus [5, 6], a multiparty extension
of the π-calculus [12]. In the spirit of process calculi, the idea is to define a mathematical frame-
work for high-level descriptions of the behaviour of microservice systems. These descriptions
can thus be formally analysed and manipulated in order to reason on the systems properties.

2 link-calculus

The link-calculus [4] uses the classical operators of process calculi such as action prefix α.P ,
choice (P +Q), parallel composition (P |Q), etc. Its distinguishing feature is a primitive inter-
action mechanism that offers two general abstractions: multiparty communication and bidirec-
tional information exchange. In its more general version [7], actions α = vt involve chains v
of links that describe the communication routing hop by hop. Furthermore, actions also carry
a polyadic communication tuple t, whose elements can be used as input or as output names.
Each party offers its chain and its tuple, and a multiparty interaction is possible when chains
and tuples can fit together.

As in π-calculus, the operational semantics can be defined in the SOS style [16], to de-
rive a Labelled Transition System. Since the link-calculus offers multiparty interactions, the
main difference with respect to π-calculus is that a communication is completed when all the
participants provide their mergeable link chains and tuples.

The link-calculus web page [2] collects all the information on the calculus, together with
some formal analysis techniques [8], and a reference to the SilVer tool to model check processes.

Links and chains. A link ` can be solid or virtual. A solid link is a pair a\b, where a and b
are channels that record the source and the destination ends of each hop of a communication.
A virtual link is written as �\�, where � represents a missing end. Two links `1 and `2 can
be juxtaposed, if one of them is virtual or they are both solid and where the destination of
`1 coincides with the source of `2. A chain is a finite juxtaposition v = `1...`n of links `i.
Intuitively, links are interlocked in a chain by joining their source and destination ends, by
exploiting the virtual links, like pieces in a fragment of a jigsaw puzzle. Two chains v1 and v2
can be merged, if they are to some extent “compatible”, in the sense that: (i) each of them
only provides solid links that are missing in the other, and (ii) superimposed together they still
form a chain. Positions occupied by virtual links in both chains remain virtual.

For example, v1 = τ\�a \b�\τ can be merged with v2 = a\b, to form τ\aa\bb\τ . Instead, the

two chains v′1 = τ\�a \b�\τ and v′2 = a\c cannot be merged, because c does not match with b.

Tuples. Name passing mechanism is based on tuples. Tuples are finite lists t = 〈w1, ..., wn〉,
where channel names can be used either as values or as variables (in this case they are under-
lined). During communication, variables are bound by the provided actual values: names can
be combined with input variables of other tuples or possibly matched with their output names.

Two tuples t1 and t2 can be merged, when the values in matching positions are compatible.
Consider, e.g. the two tuples 〈id, n, x〉 and 〈id, y,m〉, with the variables x and y and the values
id, n and m. The two tuples can be merged, because they coincide on the first parameter id,
the variable x can be bound to the value n, while y can be bound to m: the result is therefore
〈id, n,m〉.
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3 microlink: tailoring link-calculus for microservices.

A microservice system can be thought as a pool of concurrent interacting processes that coop-
erate for providing a complex service. As we said, the link-calculus communication mechanism
requires the peers can form a chain of interactions with mutual data exchange. At the abstract
level, the order in which links are added to the chain is not important and each peer can act
both as the sender of some data and as the receiver of other data.

Consider the classical and well-known travel booking scenario, where: (i) the customer C
asks for a travel package; (ii) the travel aggregator T accepts the request and asks two online
search engines, one for the flight F and one for the hotel H, for solutions; (iii) the search
engines for flights and hotels provide some alternatives. We can model this scenario in the
link-calculus, by defining a parallel composition of processes, one for each party:

C , travel\travel〈reqID , xflight , xhotel〉.C ′

T , τ\�travel\travel
� \�flight\

flight
� \�hotel\hotel

� \τ 〈xreq , xflight , xhotel〉.T ′

F , flight\flight〈xreq ,KLM305 , xhotel〉.F ′

H , hotel\hotel〈xreq , xflight ,Thuy〉.H ′

The dot represents the usual action prefix operator, where C ′, T ′, F ′ and H ′ represent some
suitable continuations. Here, an action prefix has either the form `t (a participant) or vt (the
orchestrator), for ` a single link, v a chain and t a data tuple, possibly with variables x, waiting
for actual values. Each process contributes with its links and data to the overall interaction.
When executed, all the links can be joined together in a single transition label as their ends
match pairwise, forming the following solid (i.e. without non specified actions �) chain

τ\travel
travel\travel

travel\
flight
flight\

flight
flight\

hotel
hotel\hotel

hotel\τ ,

where (see the coloured pdf version of this paper) the items in black are the answers of the
search engines, the one in red is the activity of the travel aggregator and the one in blue is the
communication of the customer. At the data level, C offers the request ID to all peers, each
search engine offers its value (KLM305 , Thuy) which is taken as input from T and C: when
the tuples are combined we get 〈reqID ,KLM305 ,Thuy〉 with the value reqID (KLM305 , Thuy ,
resp.) in the place of the variable xreq (xflight , xhotel , resp.).

One drawback of this model is that any data is visible to all peers, because the interaction
manipulates a unique data tuple. For example, in order to contribute to the interaction, the
flight process must format the message by including a field for the hotel information (and vice
versa for the hotel). Otherwise the data tuples would be incompatible. In general, this may
lead to information leaks.

To address this issue, assuming the process providing the chain acts as a trusted orchestrator,
we can tag each argument of its tuple with a set of indices to represent visibility information.
Consequently, the model can be refined as follows:

C , travel\travel〈reqID , xflight , xhotel〉.C ′

T , τ\�travel\travel
� \�flight\

flight
� \�hotel\hotel

� \τ 〈xreq , xflight
#1,2

, xhotel#1,3
〉.T ′

F , flight\flight〈xreq ,KLM305 〉.F ′

H , hotel\hotel〈xreq ,Thuy〉.H ′
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Figure 1: Data dependency graphs

The data tuple represents a temporarily shared memory that collects all the local data up-
dates that are accessible by the orchestrator. For security reasons, each other participant is
allowed to view and access only a portion of the tuple, following the access control policy estab-
lished by the orchestrator. If we imagine that positions in the chain are numbered left to right by
consecutive positive naturals starting at 1, syntactically, we can use such numbers as subscripts
inside the tuple to mark the arguments available to each peer: in 〈xreq , xflight

#1,2
, xhotel#1,3

〉
the information about the flight is shared with the parties in position 1 and 2, the one about
the hotel with the ones in position 1 and 3, while the request ID is shared among all the parties
(no subscript is necessary in this case). Now, the format of the data tuple provided by the flight
does not need to involve the hotel information and vice versa.

In the context of microservices it is important to guarantee the realisability of the orchestra-
tion. Data dependencies constrain the order in which services are invoked by the orchestrator.
Also the initiator, which invokes the orchestrator, must be determined accordingly. Data visi-
bility information is not enough to establish the choreography, so we need to enrich the above
tags by making explicit who is responsible to provide the data and who is only willing to receive
or to match it. A possible refinement of the orchestrator is thus the following:

T , τ\�travel\travel
� \�flight\

flight
� \�hotel\hotel

� \τ 〈xreq
#1→2,3

, xflight
#2→1

, xhotel#3→1
〉.T ′

Here, #1→ 2, 3 means that the information about the reqID is provided from party in position
1 and used by parties in positions 2 and 3. The annotations #2→ 1 and #3→ 1 have a similar
meaning. The calculus with this new kind of annotations is called microlink.

Unfortunately, in our example, if we draw the data dependency graph (see Fig. 1, left) we
find out some circularities that prevent one to identify the initiator and establish the (partial)
order for service invocation: peer 1 expects some data from 2 and 3 and also provides some
data to them.

To remedy this, we can split the client specification in two parts: one acting as the initiator
and the other as collector of the response:

C , travel\travel〈reqID〉.0 | pack\pack 〈reqID , xflight , xhotel〉.C ′

T , τ\�travel\travel
� \�flight\

flight
� \�hotel\hotel

� \�pack\
pack
� \τ

〈xreq
#1→2,3,4

, xflight
#2→4

, xhotel#3→4
〉.T ′

The corresponding dependency graph is in Fig. 1, right: Since the dependency graph is
acyclic, it can be used to derive, in turn, the orchestrator for the travel aggregator. We introduce
the peer 0 to represent the orchestrator. For any node n in the graph, (i) if n has only outgoing
arcs, there is a one-way communication from n to 0, written as n → 0; (ii) if n has incoming
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Figure 2: A BPMN choreography diagram for the travel aggregator system.

arcs, there is a communication from 0 to n; (iii) if n has also some outgoing arcs, then the
communication between 0 and n is of the kind request-response, written as n � 0. Any
order in the communications that is compatible with the dependency graph is acceptable. For
example, we can extract an abstract specification of the orchestrator (see below), where:

• the messages associated with one-way communications between the orchestrator and a
peer n have the form a〈t〉, where a is the channel name of peer n and t is the tuple that
collects all the labels of the arcs attached to n in the dependency graph;

• the messages associated with request-response communications between the orchestrator
and a peer n have the form a〈t1〉〈t2〉, where a is the channel name of peer n, t1 is the
tuple that collects all the labels of the incoming arcs attached to n and t2 is the tuple
that collects all the labels of the outgoing arcs attached to n.

1→ 0 : travel 〈xreq〉;
0� 2 : flight 〈xreq〉 〈xflight〉;
0� 3 : hotel 〈xreq〉 〈xhotel〉;
0→ 4 : pack 〈xreq , xflight , xhotel〉

In our example, 1 → 0 : travel 〈xreq〉 means that the Client invokes the travel aggregator
service, by instantiating the variable xreq , while 0 � 2 : flight 〈xreq〉 〈xflight〉 means that
the orchestrator invokes the request-response operation flight at the Flight service sending the
content of the variable xreq and storing the response into the variable xflight . Similarly, with
0 � 3 : hotel 〈xreq〉 〈xhotel〉 the orchestrator invokes the request-response operation hotel.
Finally, with 0 → 4 : pack 〈xreq , xflight , xhotel〉, the orchestrator collects all the information to
be sent as an answer to the Client. Note that the order of communications 0 � 2 and 0 � 3
is irrelevant and they can be executed also in parallel. The above protocol can be conveniently
represented as a BPMN choreography diagram1, as in Figure 2.

Note that this is a very particular kind of choreography, because the orchestrator is involved
in every communication and each other peer is instead involved in only one communication.

1http://www.bpmn.org
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4 Conclusions

We have proposed microlink, a language for the high-level specification of microservices inter-
actions, based on the link-calculus, where communications require the peers to form a chain of
interactions with mutual data exchange. For security reasons, each peer is allowed to view and
access only a portion of the data tuple, following the given access control policy. Furthermore,
it is important to formally verify the realisability of the communication schema.

Technically, the idea is to annotate each element of the data tuples with the information
about which peers can access it and which one provides it. These annotations allows us to
extract a dependency graph of data exchange and check whether there are ambiguous cyclic
dependencies. When the graph is acyclic, it is possible to further derive a special kind of choreog-
raphy that includes the orchestrator. Here, the orchestrator takes part in every communication
and manages the temporary shared memory of the current transaction. Each other peer only
interacts with the orchestrator via a unique one-way or request-response service invocation.

We are currently working on the complete formal specification of microlink, to extend tuple
elements with expressions. We then would like to develop a tool for the automatic synthesis of
the orchestrator.

One research direction for our future work is on some form of failure handling and transaction
recovery mechanisms in order to guarantee the correct behaviour of all participants at the end
of the sequence of interactions and also to guarantee backup services.

Another direction consists in loosening the central control of the orchestrator, by synthesising
a choreography where some peers are allowed to interact without mediation.
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