
Multitier Languages for Microservice Architectures

Simon Schönwälder1, Pascal Weisenburger1, and Guido Salvaneschi2

1 Technische Universität Darmstadt, Germany
{schoenwaelder, weisenburger}@cs.tu-darmstadt.de

2 Universität St.Gallen, Switzerland
guido.salvaneschi@unisg.ch

Summary Throughout the last years, Microservice Architectures (MSA) became increasingly
popular. This architectural style fosters the design of maintainable and scalable applications by
composing distributed systems of small services that are independently develop- and deployable.
Such microservices preferably communicate loosely using lightweight mechanisms. Yet, the
approach potentially induces complexity overhead, as it forces developers to deal with a number
of low level programming details such as communication protocols, data formats, or interface
incompatibility.

Multitier programming by contrast allows developing the different parts (tiers) of a dis-
tributed application within a single compilation unit, abstracting away the complexity associ-
ated with distribution. This includes details such as remote communication, data conversion,
callback-based flow, or coping with multiple technologies. The compiler splits the code of a dis-
tributed application into the corresponding tiers, adds all necessary network communication,
and generates the deployment units.

We propose to combine the advantages of both worlds. Our approach provides language-
level features to address modular design and development, but compiles down to microservices
in order to retain scalability, fault tolerance, and ease of deployment.

Multitier Languages for MSA

Microservices ensure that different functionalities within a distributed application can be im-
plemented independently and deployed in a highly decoupled way [2, 3, 5]. However, this comes
with a complexity overhead on developers, for instance because they explicitly have to imple-
ment inter-service communication. Separation into services can also lead to developers losing
sight of the overarching system goals, making it difficult to understand what is happening to
any particular request [7]. We observe that regular languages already provide abstractions to
structure large projects in a way that supports decoupling, hence proper maintenance from sep-
arate teams within organizations. Traditional languages provide little support for distribution
though, leaving developers alone with the aforementioned complexity. Our approach aims at
abstracting away the complexity of common approaches by providing multitier language-level
features [13] for microservice architectures. Teams can develop concise MSAs using the native
abstractions of a single multitier language.

Our solution adopts language abstractions like modules and interfaces to retain the funda-
mental advantages of MSA, such as support for independent teams, separate business domains,
and separation of interfaces. The developer is spared from low-level programming details like
communication, which is handled by the multitier compiler. Simultaneously, we aim to preserve
crucial operational characteristics of MSAs like replication, data ownership, and service hetero-
geneity. To implement our approach, we adopt the ScalaLoci multitier language [10, 11, 12] and
propose a containerization extension designed as a macro-based Scala compiler plugin for it to
provide language-level MSA support. We package, ship and orchestrate the tiers of a ScalaLoci
application into (Docker) containers, which are widely used for MSA [1, 3, 8, 9].

Multitier Languages for Microservice Architectures Schönwälder, Weisenburger and Salvaneschi

Multitier Containerization at Work

We now present an example of a distributed booking system in ScalaLoci to illustrate our
solution. The system consists of three services: UIGateway, RoomService, and HasherService.
It allows users to book a room by issuing a /book request, which will then be made persistent
in an automatically set-up database. For the sake of brevity, we omit boilerplate not essential
for comprehension.

ScalaLoci applications are composed of @multitier objects that can contain an arbi-
trary number of @peer declarations which define the tiers of the application. The annotation
@containerized is introduced by our extension and labels a @multitier object as a domain
module whose peers shall be subject to containerization. ScalaLoci @peer declarations are thus
service declarations in our approach, and each @containerized object constitutes its own mod-
ule domain to which all its contained @peer services belong.

1 @multitier sealed trait Api{
2 // Service declarations
3 @peer type Service
4 @peer type UIGateway <: Service
5 @peer type HasherService <: Service
6 @peer type RoomService <: Service
7
8 val bookingResponseStream : Evt[Response] on RoomService
9 lazy val id: UUID on Service = placed { UUID.randomUUID() }

10
11 def book(booking : Booking) : Unit on RoomService
12 def calcHash() : UUID on HasherService
13 }

Listing 1: Api of BookingSystem’s services

First, we make the functionalities of the services available through a common trait (Listing
1) were we declare the three services (Lines 4-6). These services share a common supertype
Service that holds a service id. The components that we define later extend this trait with
the specific service application logic. The on keyword specifies the location of data (Lines
8 and 9) and functions (Lines 11 and 12), e.g., bookingResponseStream is placed on the
RoomService service. As an example of inter-service communication, the UIGateway may
subscribe to the bookingResponseStream residing on the RoomService. The ScalaLoci compiler
then automatically creates the communication code for the remote access, and the UIGateway
receives all emitted events from RoomService.

Additionally, we use the case class Booking to implement room bookings, and the trait
Response with two subtypes Confirmed and Declined to indicate booking success or failure.

1 @multitier trait UIGatewayImpl extends Api{
2 @peer type UIGateway <: Service {type Tie <: Multiple[RoomService]}
3
4 // logic of UIGateway
5 def main() : Unit on UIGateway = on[UIGateway] {
6 val routes = get { path("book") {
7 (prename, surname, roomNr, from, until) =>
8 val booking = Booking(prename, surname, Integer.parseInt(roomNr), from, until)
9

10 // call the book function on a random connected RoomService
11 getRandomService[RoomService] call book(booking)
12
13 // subscribe to the response stream on RoomService
14 bookingResponseStream.asLocalFromAllSeq
15 .map(. 2)
16 .filter(.booking.roomNr == booking.roomNr)
17 .observe{
18 ... // handle and return Confirmed or Declined response

2

Multitier Languages for Microservice Architectures Schönwälder, Weisenburger and Salvaneschi

19 }
20 }
21 }
22 ... // startup and manage HTTP server
23 }
24 }

Listing 2: Implementation of UIGateway

We now show the service implementation. Listing 2 contains the logic for the UIGateway
service. It extends the previously defined Api trait so that it can access remote data not defined
within its own scope. Listing 2 also defines the connection type to other services: the UIGate-
way service can connect to an arbitrary number of RoomServices, including zero (Line 2).
Alternatively, Tie<:Multiple[Service] would allow all services to connect with each other.

The main method waits for requests at /book and it is in the UIGateway service. Upon
receiving a request, the UIGateway service constructs a Booking object and remotely invokes
the book method of the RoomService (Line 11). The compiler generates the necessary remote
communication to serve this method call. Because there may be multiple connected Room-
Services, we choose a random one to answer the request. The UIGateway service waits for a
response by subscribing to the RoomService’s bookingResponseStream. The asLocal keyword
(and variants like asLocalFromAllSeq) allows the read-only access to an object located on a
different service – the compiler takes care of the remote communication. The boilerplate code
for checking parameter validity, handling the request response back to the user (Line 18), and
for starting the HTTP server (Line 22) is omitted for the sake of brevity.

1 @multitier trait HasherServiceImpl extends Api{
2 @peer type HasherService <: Service {type Tie <: Multiple[RoomService]}
3
4 // logic of HasherService
5 // for simplicity we just return a random UUID here instead of real hash calculations
6 def calcHash() : UUID on HasherService = placed{ UUID.randomUUID() }
7 }
8 @multitier trait RoomServiceImpl extends Api{
9 @peer type RoomService <: Service {type Tie <: Optional[UIGateway] with Single[HasherService]}

10
11 // logic of RoomService
12 val bookingResponseStream : Evt[Response] on RoomService = placed{ Evt[Response] }
13
14 def book(booking : Booking) : Unit on RoomService = placed{
15 (remote call calcHash).asLocal.onComplete {
16 case Success(hash) =>
17 val hashedBooking = booking.withHash(hash)
18 //getBookingDb returns a db helper for RoomService’s local db
19 getBookingDb.insertDocumentObserved("bookings",
20 hashedBooking.toBsonSeq,
21 new Observer[Completed] {
22 override def onError(): Unit = bookingResponseStream fire Declined(hashedBooking)
23 override def onComplete(): Unit = bookingResponseStream fire Confirmed(hashedBooking)
24 }
25)
26 case Failure() => bookingResponseStream fire Declined(booking)
27 }
28 }
29 }

Listing 3: Implementation of RoomService and HasherService

Listing 3 analogously contains the logic for RoomService and for HasherService. Like before,
the services define their interconnections. Optional ties denote that a RoomService can run
without a UIGateway – even if the connection fails, the service keeps running. On the other
hand, RoomService relies on the functionalities of the HasherService. For this reason, the tie is

3

Multitier Languages for Microservice Architectures Schönwälder, Weisenburger and Salvaneschi

defined as mandatory using Single. The HasherService shuts down and restarts if the connec-
tion attempt fails. Line 6 in Listing 3 shows the implementation of HasherService’s calcHash

function, which simply returns a random UUID to keep our example concise. Lines 12 and
following contain the logic of RoomService. The bookingResponseStream identifier is bound
to an event stream. The book function, called by UIGateway (Listing 2, Line 11), handles the
booking process. First, the RoomService requests a hash from its connected HasherService by
invoking its calcHash function. After receiving the hash, RoomService sets the hash as the
booking’s confirmation code, and writes the booking object to its connected local database.
The database setup is in Listing 4. We omit the boilerplate code for insertDocumentObserved
– it does what its name suggests. Depending on the outcome of the database write, the
insertDocumentObserved function fires either a Confirmed or a Declined response to the
bookingResponseStream. The response is ultimately received by the UIGateway (Listing 2,
Line 14). We purposely used two ways of inter-service communication – remote function calls
and subscription to remote events – to demonstrate both options.

1 @containerized @multitier object BookingSystem extends UIGatewayImpl with HasherServiceImpl with
RoomServiceImpl

2
3 @gateway("""{ "ports":"80" }""")
4 object UIGateway extends App {
5 multitier start new Instance[BookingSystem.UIGateway](
6 listen[BookingSystem.RoomService] {...}
7)
8 }
9 @service("""{ "replicas":"3", "localDb":"mongo" }""")

10 object RoomService extends App {
11 multitier start new Instance[BookingSystem.RoomService](
12 connect[BookingSystem.UIGateway] {...} and
13 connect[BookingSystem.HasherService] {...}
14)
15 }
16 @service
17 object HasherService extends App {
18 multitier start new Instance[BookingSystem.HasherService](
19 listen[BookingSystem.RoomService] {...}
20)
21 }

Listing 4: Starting the Application

Finally, Listing 4 depicts the startup code for the application. In this example, we separate
the application logic into different traits, but we only define a single @containerized domain
module that integrates all service functionalities (Line 1). Hence all services will be deployed
together in a single domain (BookingSystem).

The deployment process of the application is controlled using @service and @gateway.
Every declared @service object is deployed into its own Docker image (corresponding to a
container). The container uses the respective object as its main entry point. The object extends
App and is therefore executable. We create one @service object per @peer running said peer
with multitier start. This solution ensures that when the deployed container starts up, it
also starts up the respective peer logic defined in Listings 1-3. Thus, @peer allows one to define
a service and its logic, and @service defines how to deploy the service. We specifically denote
the UIGateway object with @gateway instead of @service, because it is externally reachable
over port 80. For the RoomService, we instruct the compiler to generate 3 replicas of this service
plus a local mongoDb database in a dedicated container (Line 9) which is used by the book

method in Listing 3. In the example, all connections are defined at startup, but ScalaLoci also
supports connections established or destroyed at runtime.

4

Multitier Languages for Microservice Architectures Schönwälder, Weisenburger and Salvaneschi

Figure 1: Deployment process for Listings 1-4

Deployment Structure Figure 1 shows the resulting architecture after the compiler au-
tomatically generates the communication and the containerization code. The domain of a
@containerized object is modeled using Docker stacks. The example therefore produces a
ready-to-deploy load-balanced Docker Swarm architecture (gray background) that contains one
stack with three services. Dotted lines indicate communication flow. Each @gateway/@service

object is deployed to a corresponding Docker image and it runs as a Swarm service. The af-
filiation of a service to a stack is determined by the @containerized module of the @peer it
executes. The RoomService runs with three container instances and a dedicated local database.
A more sophisticated MSA may contain multiple domains and stacks, or may integrate with
other non-ScalaLoci microservice domains via custom API gateways using @gateway. One can
thus use our solution for whole MSAs or just for single application domains achieving static
safety (e.g., cross-service type checking), still respecting MSA’s polyglot philosophy.

Outlook

The future work of this line of research unfolds along three directions. First, at the language
level, we envision more advanced build-in support for loose service coupling through the use of
open communication interfaces such as REST, clear separation of interfaces offered and used
by single modules, and facilitated integration of heterogeneous external services developed with
different technologies. A major focus for future work is modularity to support larger projects.
A first step in this direction is the ScalaLoci module system [11].

Second, we plan to add direct support for data management to our multitier solution. The
developer can then use dataflow abstractions [4] to express data retrieval and processing and
the compiler automatically generates the required deployment [6] based on containers.

Finally, the current solution does also produce low-level output that can principally be used
in any orchestration tool, it is mainly optimized for direct use with Docker Swarm. Hence,
another direction encompasses extended support for sophisticated integration mechanisms and
tools, such as direct support for Kubernetes or KNative, DevOps/CI integration tools, service
monitoring, or FaaS/Serverless Computing.

5

Multitier Languages for Microservice Architectures Schönwälder, Weisenburger and Salvaneschi

References

[1] Marcelo Amaral, Jordà Polo, David Carrera, Iqbal Mohomed, Merve Unuvar, and Malgorzata
Steinder. Performance evaluation of microservices architectures using containers. In 14th IEEE
International Symposium on Network Computing and Applications, pages 27–34. 2015.

[2] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio Montesi,
Ruslan Mustafin, and Larisa Safina. Microservices: yesterday, today, and tomorrow. In Manuel
Mazzara and Bertrand Meyer, editors, Present and Ulterior Software Engineering, pages 195–216.
Springer International Publishing, 2017.

[3] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonca, James Lewis, and Stefan Tilkov. Microservices:
The journey so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.

[4] Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. A fault-tolerant program-
ming model for distributed interactive applications. Proc. ACM Program. Lang., 3(OOPSLA),
October 2019.

[5] Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services architecture. International Journal
of Open Information Technologies, 2(9):24–27, 2014.

[6] Guido Salvaneschi, Mirko Köhler, Daniel Sokolowski, Philipp Haller, Sebastian Erdweg, and Mira
Mezini. Language-integrated privacy-aware distributed queries. Proc. ACM Program. Lang.,
3(OOPSLA), October 2019.

[7] Umesh Ram Sharma. Practical Microservices: A Practical Approach to Understanding Microser-
vices. Packt Publishing, 2017.

[8] Alan Sill. The design and architecture of microservices. IEEE Cloud Computing, 3(5):76–80, 2016.

[9] M.V.L.N. Venugopal. Containerized microservices architecture. International Journal Of Engi-
neering And Computer Science, 6(11):23199–23208, 2017.

[10] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development with
scalaloci. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–30, 2018.

[11] Pascal Weisenburger and Guido Salvaneschi. Multitier modules. In Proceedings of the 33rd Euro-
pean Conference on Object-Oriented Programming (ECOOP), volume 134, pages 1–29, 2019.

[12] Pascal Weisenburger and Guido Salvaneschi. Implementing a language for distributed systems:
Choices and experiences with type level and macro programming in scala. The Art, Science, and
Engineering of Programming, 4(3), 2020.

[13] Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. A survey of multitier programming.
ACM Computing Surveys, 2020.

6

