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Abstract

The adoption of Microservice Architecture (MSA) is expected to increase software
quality attributes like scalability, maintainability, and reliability. In particular, monolithic
architectures are expected to benefit from a migration to MSA. However, it also introduces
additional complexity in architecture design, implementation, and operation. To cope
with this complexity, we investigate the application of Model-driven Engineering to MSA
engineering. Therefore, we developed a set of textual modeling languages, that addresses
the viewpoints and concerns of different stakeholder groups in MSA engineering, in recent
works.

By intent, our modeling languages only integrate concepts and keywords for basic
building blocks of MSA. In particular, we do not provide built-in concepts for architecture
patterns to increase languages’ learnability and stability. Instead, we implemented an
aspect mechanism to flexibly augment model elements with metadata.

In this paper, we present an approach based on this aspect mechanism to non-intrusively
extend our modeling languages with architecture pattern support. Therefore, we illustrate
the specification of aspects and the implementation of aspect constraints to ensure pattern-
compliance. We illustrate our approach by means of the Event Sourcing and Command
Query Responsibility Segregation patterns, both becoming increasingly popular in MSA
engineering.

Keywords: Microservice Architecture, Model-driven Engineering, Modeling Languages, Ar-
chitecture Modeling, Event Sourcing, Command Query Responsibility Segregation

1 Introduction

The adoption of Microservice Architecture (MSA) is expected to increase software quality at-
tributes like scalability, maintainability, and reliability [5]. However, the migration to MSA,
particularly from monolithic architectures, introduces additional complexity regarding archi-
tecture design, implementation, and operation. Typical challenges in these areas comprise, e.g.,
API versioning, service tailoring, and dealing with technology heterogeneity [26].

To support MSA stakeholders in coping with such challenges, we investigate the application
of Model-driven Engineering (MDE) [3] to MSA engineering. In recent works, we therefore
developed the Language Ecosystem for Modeling Microservice Architecture (LEMMA) [20, 23].
LEMMA comprises a set of textual architecture modeling languages [25] and means to facilitate
processing of models constructed with these languages, e.g., for architecture analysis [22]| or
generation of microservice code [21]. Table 1 provides a brief overview of LEMMA’s modeling
languages. Their implementation can be found on GitHub'.

LEMMA’s modeling languages provide built-in concepts and keywords for basic building
blocks of MSA, e.g., microservice, interface, and operation [23]|. By intent, however, they

Ihttps://github.com/SeelabFhdo/lemma
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Table 1: Overview of LEMMA modeling languages and their relationship to stakeholders in
MSA engineering [20, 23].

Stakeholders Modeling Languages

Domain experts, Domain Data Modeling Language [23]: Enables stakeholders to construct
Service developers  domain models with domain-specific data structures, lists, and enumer-
ations, including the assignment of patterns from Domain-driven Design

(DDD) [7].
Service developers, Technology Modeling Language [20]: Allows for constructing technology
Service operators models that prescribe available types of microservice implementation lan-

guages, communication protocols, and operation technologies. In addi-
tion, generic technology aspects can be modeled to augment, e.g., data
structures and microservices modeled in LEMMA with technology-specific
information like database mappings or endpoint URIs.

Technology Mapping Language: Enables the construction of mapping
models, which assign technology-specific information to elements captured
in domain and service models. Domain and service models can therefore
be kept technology-agnostic and reusable across technological alternatives
in order to cope with MSA’s technology heterogeneity [17].

Service developers  Service Modeling Language [23]: Enables the construction of service mod-
els that specify microservices, their interfaces and operations. Domain
models may be imported for operation parameter typing.

Service operators Operation Modeling Language [23]: Allows for constructing operation
models. They import service models to describe microservice deploy-
ment and infrastructure, e.g., for data storage, API provisioning, service
discovery and monitoring [1], including its usage by services.

do not integrate dedicated modeling concepts and keywords for patterns like Circuit Breaker or
Command Query Responsibility Segregation (CQRS) [15, 24]. That is, to foster the learnability
of the languages and the comprehensibility of constructed models [2]. Furthermore, by keep-
ing the languages free from pattern-specific concepts and keywords, we aim to increase their
stability. The emergence of a new pattern thus does not require the languages to be adapted
accordingly.

On the other hand, LEMMA’s Technology Modeling Language (cf. Table 1) integrates the
technology aspect concept. It can be used to flexibly augment elements in LEMMA domain
and service models with custom, yet technology-specific metadata. A technology aspect may,
for instance, represent a certain annotation from microservice implementation frameworks such
as Spring?. To this end, technology aspects are first defined in LEMMA technology models.
Next, technology models are imported into service models for aspect application. Alternatively,
a mapping model may be constructed with LEMMA’s Technology Mapping Language to keep
service models technology-agnostic (cf. Table 1). Therefore, the mapping model imports rele-
vant technology, domain, and service models, and applies technology aspects to target elements
from domain or service models as required.

In this paper, we present first insights into exploring the applicability of the technology
aspect mechanism for enriching LEMMA models with architecture patterns. Our main goal is

2https://www.spring.io
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to investigate the non-intrusive and flexible extension of LEMMA with architecture patterns,
without the need for altering any of its modeling languages (cf. Table 1). Thus, learnability,
comprehensibility, and stability of LEMMA would be preserved, by still guaranteeing its modi-
fiability to cope with technical progress in the field of MSA. More specifically, the contributions
of our paper revolve around the following research questions (RQs):

RQ 1 Which steps are required to exploit LEMMA’s aspect mechanism and model processing
framework to integrate architecture patterns into LEMMA models and check for their
correct application?

RQ 2 Which artifacts need to be provided to MSA stakeholders (c¢f. Table 1) to enable the
enrichment of their LEMMA models with architecture patterns?

RQ 3 To what extent is LEMMA capable of architecture pattern integration in terms of the
overall complexity of the integration process?

To gather initial answers to the RQs, we leverage the Event Sourcing and CQRS patterns
[24, 15] as objects of study for non-intrusive pattern integration in LEMMA. Both patterns are
frequent in event-driven microservice architectures [19].

The remainder of the paper is organized as follows. Section 2 provides background infor-
mation on Event Sourcing and CQRS. Section 3 presents an approach to extend LEMMA with
modeling support for both patterns. Section 4 discusses the approach in the light of our RQs.
Section 5 presents related work and Section 6 concludes the paper.

2 Background

The Event Sourcing and CQRS patterns are expected to positively impact the scalability and
modifiability [9] of a microservice architecture [24]. That is, because both patterns are centered
around event-driven and thus asynchronous interaction between microservices [15]. To make
the paper self-contained, the following Subsections 2.1 and 2.2 provide a brief overview of both
patterns.

2.1 Event Sourcing

The Event Sourcing pattern considers the current state of a domain object [7] within a software
architecture to have emerged from a sequence of domain events [24]. In this context, a concrete
domain event is a typically immutable domain object that conveys information about activities,
which occurred within the domain model of an application or a parts thereof [8]. For example,
a domain concept Account, which represents a bank account in a microservice architecture
located in the Financial Service domain [13], may exhibit a data field called balance. It stores
the current balance of a concrete bank account and its value is the result of a sequence of past
domain events, e.g., for depositing and withdrawing money.

A technical building block for the realization of Event Sourcing is the Event Store, i.e., a
message broker to distribute domain events in a publish-subscribe fashion and persist them in
their order of occurrence to enable traceability of the current state of a domain object [24].
Next to increasing the decoupling, and thus scalability and modifiability, of services within a
microservice architecture, the Event Store also allows for the implementation of history and
auditing mechanisms.
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2.2 CQRS

The CQRS pattern separates actions that change domain objects’ states from those that read
them [24]. A CQRS-enabled microservice is therefore considered to have a command side, query
side, or both. The command side handles write actions to domain objects, while the query side is
responsible for read actions. Technically, the command and read sides may either be interfaces,
which cluster corresponding write or read operations, of the same microservice. On the other
hand, to further increase scalability, the command and query sides may also be realized as
distinct microservices to enable independent scalability, e.g., when read actions are much more
frequent than write actions. In either case, the command side informs query sides about state
changes of domain objects by means of events. Thus, CQRS can directly be integrated with
Event Sourcing (cf. Subsection 2.1).

The adoption of CQRS yields several benefits [24]. First, the pattern allows for applying
the most appropriate means for read actions. In the example of an Account domain object it
may make sense to store its master data in a relational database management system (DBMS).
However, to realize functionality that, e.g., enables account holders to efficiently search through
references, parts of the Account’s transactions may be stored in a DBMS being optimized for
full-text search. A query side microservice dedicated to full-text reference search would then be
respounsible for (i) setting up the optimized DBMS; (ii) keeping it consistent with newly occurred
transactions received as events; and (iii) provide access to its entries for full-text search.

Another benefit of CQRS is the possibility to provide additional query sides as needed, given
the loose coupling between command and query sides induced by their event-based interaction.

3 Non-Intrusive Extension of LEMMA with Support for
Event Sourcing and CQRS

In the following, we present a non-intrusive approach to extend LEMMA with support for the
Event Sourcing and CQRS patterns (cf. Section 2). In a first step, pattern-specific technology
models (cf. Table 1) are defined (cf. Subsection 3.1). They capture the underlying concepts
of the patterns as technology aspects, which can then be applied to elements in LEMMA
domain and service models (cf. Table 1). Next, model validators for the pattern-specific
technology models are provided (cf. Subsection 3.2). The validators are based on LEMMA'’s
model processing framework and can thus check models for the correct application of technology
aspects that reflect pattern concepts. The section is concluded by illustrating the non-intrusive
extension of LEMMA with support for Event Sourcing and CQRS leveraging pattern-specific
technology models and the corresponding model validators (cf. Subsection 3.3).

3.1 Technology Models

LEMMA’s Technology Modeling Language can be used to define technology aspects being
applicable to certain elements in LEMMA domain and service models (cf. Table 1). While
originally being developed to augment these models with technology-specific information, e.g.,
built-in types from programming languages and annotations or configuration options predefined
by microservice implementation frameworks, LEMMA’s aspect mechanism provides a means
to assign arbitrary metadata to model elements. Consequently, we exploit it to capture initial
underlying concepts of the Event Sourcing and CQRS patterns as shown in Subsubsections 3.1.1
and 3.1.2.
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3.1.1 Event Sourcing Technology Model
Listing 1 shows an initial LEMMA technology model for the Event Sourcing pattern.

Listing 1: LEMMA technology model for the Event Sourcing pattern.

// Model file name: EventSourcing.technology
technology EventSourcing {
service aspects {
aspect Producer<singleval> for operations {
string handlerName<mandatory>;

}

aspect Consumer<singleval> for operations {
string handlerName<mandatory>;
boolean groupEventsOnly = false;

aspect EventGroup<singleval> for types {
string name<mandatory>;
}
}
}

The model specifies three service aspects for the EventSourcing technology. They are based
on the concepts of the Event Sourcing pattern as described by Richardson [24]. The Producer
aspect in Lines 4 to 6 identifies event producers. The for operations statement constrains
the applicability of the aspect to microservice operations specified within a LEMMA service
model and the singleval keyword allows the aspect to occur exactly once per operation. In
addition, the aspect comprises the string-typed handlerName property. It is mandatory and
thus has to be specified each time the aspect is applied to an operation. Semantically, the
property identifies the name of a handler, which is responsible for sending an event. Such a
handler could be, for example, a Java class that reflects a Spring Service® and is responsible
for sending event objects via a Kafka* broker.

The Consumer aspect specified in Lines 8 to 11 of Listing 1 identifies event consumers. Sim-
ilar to Producer, the Consumer aspect takes a handlerName as mandatory property. Consumer
handlers are responsible for event receiving and processing. Furthermore, a consumer may be
constrained to the handling of event groups (groupEventsOnly property). Event groups can
be defined via the EventGroup aspect (Lines 13 to 15). The for types statement enables the
application of the aspect to domain-specific types contained in LEMMA domain models (cf.
Table 1). Its mandatory name property holds the name of an event group, which clusters several
events, e.g., to unify their processing by the same event handler.

3.1.2 CQRS Technology Model
Listing 2 contains a preliminary technology model for the CQRS pattern.

Listing 2: LEMMA technology model for the CQRS pattern.

// Model file name: Cqrs.technology
technology CQRS {
service aspects {
aspect CommandSide for microservices {
string logicalService;

3https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/stereotype/
Service.html
4https://kafka.apache.org



https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://kafka.apache.org

Non-Intrusive Extension of MSA Modeling Languages with Architecture Pattern Support Rademacher

aspect QuerySide for microservices {
string logicalService;

}

aspect CommandSide for interfaces;
aspect QuerySide for interfaces;

The CQRS technology model specifies the CommandSide and QuerySide aspects. Both
aspects are applicable to microservices (for microservices statement) as well as interfaces
(for interfaces statement) defined within LEMMA service models (cf. Table 1). However,
the microservice-enabled versions of the aspects (cf. Lines 4 to 10) specify the additional logi-
calService property. It can be used to indicate that a command and one or more query sides
belong to the same logical microservice when they are realized by different physical microservices
to increase scalability [24].

3.2 Model Validators

The initial technology models presented in Subsection 3.1 capture the underlying concepts of
the Event Sourcing and CQRS patterns in the form of technology aspects. However, LEMMA’s
Technology Modeling Language only allows for constraining (i) the types of target elements
that can be augmented by aspects (e.g., for operations and for types statement); (ii) the
number of aspect occurrences at model elements (singleval keyword); and (iii) the existence
of aspect properties (mandatory keyword). As a result, constraints that exceed those conditions
are not directly verifiable by LEMMA’s modeling languages albeit them being crucial to model
the correctness of pattern applications. For example, the application of the Producer aspect of
the Event Sourcing technology model (cf. Subsubsection 3.1.1) is only sensible for microservice
operations that define at least one asynchronous outgoing parameter [23]. In case of CQRS, it
should be guaranteed, for instance, that events sent by a command side microservice are type-
compatible to events received by any query side microservice of the same logical microservice
(cf. Subsection 2.2 and Subsubsection 3.1.2).

To circumvent the lack of expressivity in LEMMA’s Technology Modeling Language for
more sophisticated constraints on aspect application, LEMMA’s model processing framework
can be used. This framework aims to facilitate the implementation of static analyzers and code
generators [3] for LEMMA models by abstracting from the complexity of Eclipse technologies
like Ecore®, Xcore®, and Xtext”, on which LEMMA is based [23].

The following Subsubsections 3.2.1 and 3.2.2 list preliminary constraints for the underlying
concepts of the Event Sourcing and CQRS patterns. Consequently, the constraints target the
pattern-specific technology models and aspects presented in Subsection 3.1. Subsubsection 3.2.3
describes the implementation of the constraints by means of LEMMA’s model processing frame-
work.

3.2.1 Event Sourcing Constraints

Table 2 lists initial constraints for the technology model of the Event Sourcing pattern (cf.
Subsubsection 3.1.1).

Shttps://wiki.eclipse.org/Ecore
Shttps://wiki.eclipse.org/Xcore
"https://www.eclipse.org/Xtext
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Table 2: Constraints in the context of the technology model for the Event Sourcing pattern.

#  Constraint Summary Model Type Failure Type

C.1  Only domain events may be clustered in groups Mapping Model Error

Description: The EventGroup aspect may only be applied to domain-specific types with the

domainEvent feature [23].

C.2 Domain event consumers must specify asyn-  Service Model Error
chronous incoming parameters

Description: The Consumer aspect may only be applied to microservice operations with at

least one asynchronous incoming parameter. Otherwise, the consumption of events is not pos-

sible.

C.3 Domain event producers must specify asyn-  Service Model Error
chronous outgoing parameters

Description: The Producer aspect may only be applied to microservice operations with at
least one asynchronous outgoing parameter. Otherwise, the production of events is not possible.
C.4 Event group consumers must only specify asyn-  Service Model Error
chronous incoming parameters, whose types are
domain events

Description: If the groupEventsOnly property of the Consumer aspect is set, augmented
microservice operations must only exhibit asynchronous incoming parameters with the domain-
Event feature. That is, because the EventGroup aspect is only applicable to domain events (see
above).

3.2.2 CQRS Constraints

Similar to Table 2, Table 3 lists initial constraints for the technology model of the CQRS pattern
(cf. Subsubsection 3.1.2).

Table 3: Constraints in the context of the technology model for the CQRS pattern.

#  Constraint Summary Model Type Failure Type

C.5  Existence of operations with asynchronous outgo- Service Model Warning
ing parameters in command side

Description: The command side of a CQRS microservice identified by the CommandSide aspect
should be able to asynchronously communicate state changes in domain objects to query sides
[24].
C.6  Existence of operations with asynchronous incom-  Service Model Warning

ing parameters in query side

Description: The query side of a CQRS microservice identified by the QuerySide aspect
should be able to asynchronously receive state changes in domain objects from a command
side.

C.7  Query side interface requires command side inter- Service Model Warning
face within the same microservice
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Table 3: Constraints in the context of the technology model for the CQRS pattern (continued).

#  Constraint Summary Model Type Failure Type

Description: In case the QuerySide aspect is applied to an interface, there should be a

command side interface within the same microservice for the query side interface to receive

updates on state changes of domain objects.

C.8 Query side microservice requires command side mi-  Service Model Warning
croservice of same logical microservice

Description: If the QuerySide aspect is applied to a microservice, the query side microservice
should require a command side microservice [23], which belongs to the same logical microservice,
to receive updates on state changes of domain objects.

C.9 Query side requires compatibility of receiving Service Model Warning
event parameters with events being sent by com-
mand side

Description: A QuerySide interface or microservice modeled in LEMMA should exhibit at
least one operation, whose asynchronous incoming parameters are type-compatible with the
asynchronous outgoing parameters of an operation of the CommandSide interface or microservice.
Otherwise, state changes may not be received by query sides leading to inconsistent query results
[24].

3.2.3 Model Validator Implementation

We employed LEMMA’s model processing framework to realize two validators for the constraints
listed in Tables 2 and 3. Each validator targets exactly one pattern.

LEMMA'’s model processing framework abstracts from MDE technologies like Ecore, Xcore,
and Xtext as much as possible. It aims to facilitate model processor implementation by
technology-savvy stakeholders of MSA engineering, e.g., service developers, without experience
in the MDE field. To this end, LEMMA’s model processing framework relies on well-known
programming patterns, e.g., Inversion of Control (IoC) [10], and integrates built-in, yet exten-
sible model processing phases [14], e.g., for model validation or code generation. Leveraging the
framework, model processors may (i) directly be implemented as standalone executable Java
archives; (i) automatically parse LEMMA models and gain access to the resulting Abstract
Syntax Trees (ASTS); and (iii) structure model processing in subsequent phases and rely on
annotation-driven IoC to enrich phases with processor-specific logic. The framework is written
in Kotlin®, and thus fully compatible with Java and the Java Virtual Machine. Its implemen-
tation can be found on GitHub?®.

Next to built-in model processing phases for model validation and code generation, LEMMA’s
model processing framework also includes a phase called Live Validation. While the Model Val-
idation phase prints warnings and errors issued by model processors to the standard output,
the Live Validation phase is capable of interacting with a running Eclipse IDE to show valida-
tion messages directly within the model editor. Consequently, modelers can construct LEMMA
models with interactive validation support and directly fix processor-specific model issues as
they occur. Technically, the Live Validation phase is based on the Language Server Protocol

8https://kotlinlang.org
9https://github.com/SeelabFhdo/lemma/tree/master/de.fhdo.lemma.model_processing
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(LSP)!° and its Eclipse implementation'!. More specifically, each LEMMA model processor

also represents an LSP client. Model validations realized by model processors in their Model
Validation phase are automatically executed during Live Validation without any additional
implementation effort required.

3.3 Extending LEMMA with Support for Event Sourcing and CQRS

In the following, we illustrate the extension of LEMMA with support for the Event Sourcing
and CQRS patterns as prescribed by the pattern-related technology models (cf. Subsection 3.1)
and constraints (cf. Subsection 3.2). To this end, we provide a holistic example for LEMMA
modeling in the Financial Service domain (cf. Section 2). Subsubsection 3.3.1 describes the cor-
responding LEMMA domain model. Subsubsection 3.3.2 presents the LEMMA service models,
which build upon the pattern-specific technology models. Subsubsection 3.3.3 illustrates the
implementation and usage of the pattern-specific model validators to ensure pattern-compliance
in LEMMA models.

3.3.1 LEMMA Domain Model

Listing 3 shows the LEMMA domain model for the example from the Financial Service domain.
It is expressed in LEMMA’s Domain Data Modeling Language (cf. Table 1) and employs
patterns from DDD [7, 8] to model bank accounts, commands, and domain events.

Listing 3: Example LEMMA domain model for the DDD Bounded Context Account.

// Model file name: Account.data
context Account {
structure Account<aggregate, entity> {
long id<identifier>,
string owner,
double balance

}

structure CreateAccountCommand<valueObject> {
immutable string owner,
immutable double initialBalance

}

structure DepositMoneyCommand<valueObject> {
immutable long accountId,
immutable double amount

structure AccountCreatedEvent<valueObject, domainEvent> {
immutable long id,
immutable string owner,
immutable double initialBalance

}

structure MoneyDepositedEvent<valueObject, domainEvent> {
immutable long accountId,
immutable double amount,
immutable double newBalance

The domain model defines the Account context. Semantically, LEMMA’s context keyword
corresponds to the Bounded Context pattern from DDD [7]. In MSA, bounded contexts may
be used to cluster coherent, domain-specific data of a microservice [17, 6]. The Account context

Ohttps://microsoft.github.io/language-server-protocol
Hhttps://projects.eclipse.org/projects/technology.1lsp4j
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in Listing 3 comprises the structured Account domain concept, which is modeled as a DDD
Aggregate and Entity [7] (cf. the aggregate and entity keywords in Line 3). The domain
concept comprises three data fields. The id field acts as the identifier of an Account instance.
The owner field identifies the owner of a bank account and the balance field holds the current
account balance.

Lines 9 to 17 of Listing 3 specify two DDD Value Objects [7], each of which represents a
command in the sense of the CQRS pattern (cf. Subsection 2.2). CreateAccountCommand (cf.
Lines 9 to 12) signals the creation of a new bank account, including its owner and initial-
Balance. Both fields are immutable and receive a value only once upon creation of a new bank
account [23]. Immutability is a a common characteristic of DDD Value Objects [7]. Deposit-
MoneyCommand (cf. Lines 14 to 17) is a DDD Value Object and CQRS command for depositing
money in a bank account. Therefore, it clusters the accountId and deposited amount.

Lines 19 to 29 of Listing 3 define two DDD Value Objects and domain events [8]. The
AccountCreatedEvent (cf. Lines 19 to 23) communicates the creation of a new bank account,
including its id, owner, and initialBalance. The MoneyDepositedEvent (cf. Lines 25 to 29)
signals the deposit of money for a bank account. It conveys the accountId and the deposited
amount. Furthermore, it considers the newBalance of the account, whose calculation is in the
responsibility of the DepositMoneyCommand receiver (cf. Subsubsection 3.3.2).

3.3.2 LEMMA Service Models

Starting from the domain model (cf. Subsubsection 3.3.1), LEMMA service models may now
be specified. Listing 4 shows the command side microservice of the logical CQRS-enabled Ac-
countMicroservice, which is responsible for the Account bounded context in Listing 3. The
command side microservice is expressed in LEMMA'’s Service Modeling Language (cf. Table 1).

Listing 4: Excerpt of the example LEMMA service model for the command side of the logical
AccountMicroservice.

// Model file name: Account.services

import datatypes from "Account.data" as Account

import technology from "EventSourcing.technology" as EventSourcing
import technology from "Cqrs.technology" as CQRS

@technology(EventSourcing)
@technology(CQRS)
@CQRS: : _aspects.CommandSide(logicalService="AccountMicroservice")
functional microservice org.example.AccountCommand {
interface CommandSide {
API endpoint for creating a new account
command Command object to specify the values of the new account
createAccount(
sync in command : Account::Account.CreateAccountCommand,
sync out accountId : long

’

API endpoint for money deposit
command Deposit command object
depositMoney (
sync in command : Account::Account.DepositMoneyCommand
)i

@EventSourcing::_aspects.Producer(handlerName="AccountEventProducer")
sendAccountCreatedEvent (
async out event : Account::Account.AccountCreatedEvent

’

10
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@EventSourcing::_aspects.Producer(handlerName="AccountEventProducer")

sendMoneyDepositedEvent (

async out event : Account::Account.MoneyDepositedEvent

)i
}

}

In Lines 2 to 4, the service model first imports the “Account.data” domain model (cf. List-
ing 3), and the Event Sourcing as well CQRS technology models (cf. Listings 1 and 2). Next,
Lines 6 to 7 use LEMMA'’s built-in @technology annotation to assign the imported technolo-
gies to the following org.example.AccountCommand microservice. In Line 8, the CommandSide
aspect from the CQRS technology model is assigned to the service. Consequently, it is seman-
tically recognizable as the command side of the logical AccountMicroservice (cf. Subsubsec-
tion 3.1.2).

In Lines 11 to 18 of Listing 4, the createAccount microservice operation is specified [23].
It expects an instance of the CreateAccountCommand from the Account domain model (cf.
Subsubsection 3.3.1) in the form of the synchronous command parameter and returns the ac-
countId of the newly created bank account after having executed the command. The deposit-
Money operation in Lines 20 to 26 is responsible for handling the DepositMoneyCommand from
the Account domain model.

The events subsequent to the CreateAccountCommand and DepositMoneyCommand are sent
by means of the microservice operations sendAccountCreatedEvent (cf. Lines 28 to 31 in
Listing 4) and sendMoneyDepositedEvent (cf. Lines 33 to 36). Therefore, both operations
specify an asynchronous outgoing parameter event [23] being typed by the corresponding do-
main event from the Account domain model (cf. Subsubsection 3.3.1). The Producer aspect
from the Event Sourcing technology model identifies both operations as domain event producers
(cf. Subsubsection 3.1.1).

Listing 5 models a query side microservice org.example.AccountQuery for the logical Ac-
countMicroservice. The query side model is part of the same LEMMA service model file as
the command side model (cf. Listing 4).

Listing 5: Excerpt of the example LEMMA service model for the query side of the logical
AccountMicroservice (continuation of Listing 4).

// Model file name: Account.services

@technology(EventSourcing)
@technology (CQRS)
@CQRS: : _aspects.QuerySide(logicalService="AccountMicroservice")
functional microservice org.example.AccountQuery {
required microservices {
AccountCommand

interface QuerySide {

@EventSourcing::_aspects.Consumer(handlerName="AccountEventConsumer")
receiveAccountCreatedEvent (

async in event : Account::Account.AccountCreatedEvent

);

@EventSourcing::_aspects.Consumer(handlerName="AccountEventConsumer")
receiveMoneyDepositedEvent (

async in event : Account::Account.MoneyDepositedEvent

)i

11
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Similarly to the command side microservice in Listing 4, the org.example.AccountQuery
microservice is augmented with the Event Sourcing and CQRS technology models. Moreover,
the service is preceded with the QuerySide aspect from the CQRS technology model (cf. Sub-
subsection 3.1.2). The value of the logicalService property identifies AccountQuery as a
query side microservice for the command side microservice AccountCommand (cf. Listing 4). In
addition, AccountQuery specifies AccountCommand as a required microservice [23] (cf. Lines 8
to 10 in Listing 5). That is, because, following the CQRS pattern, AccountQuery depends on
the command side microservice AccountCommand to receive updates to domain objects in the
form of events (cf. Subsection 2.2).

In Lines 15 to 18, Listing 5 models the receiveAccountCreatedEvent operation. It is the
receiving counterpart to the command side’s sendAccountCreatedEvent operation (cf. Lines 28
to 31 in Listing 4), because it defines an asynchronous incoming event parameter typed with the
AccountCreatedEvent domain event from the Account domain model (cf. Subsubsection 3.3.1).
Furthermore, the operation exhibits the Consumer aspect from the Event Sourcing technology
model to identify itself as an event consumer (cf. Subsubsection 3.1.1). Similarly, the receive-
MoneyDepositedEvent operation in Lines 20 to 23 of Listing 5 is the receiving counterpart of
the sendMoneyDepositedEvent operation in Lines 33 to 36 of Listing 4.

3.3.3 Model Validators

In the following, we briefly describe the implementation of model validators for the constraints
listed in Subsubsections 3.2.1 and 3.2.2. The model validators can be used to check the service
models from Subsubsection 3.3.2 for compliance with the Event Sourcing and CQRS patterns.

We developed a model validator for each of the two pattern-specific technology models (cf.
Subsection 3.1) by means of LEMMA'’s model processing framework. That is, the Event Sourc-
ing Validator focuses on the Event Sourcing pattern and the CQRS Validator is capable of
checking service models for CQRS compliance. To illustrate the implementation of LEMMA
model validators, each of the following Listings 6 to 8 shows an excerpt from the Kotlin imple-
mentation of the Event Sourcing Validator. Listing 6 comprises the entry point of the validator.

Listing 6: Entry point of the Event Sourcing Validator.

class EventSourcingValidator : AbstractModelProcessor("org.example.lemma.event_sourcing")
fun main(args: Array<String>) {

EventSourcingValidator().run(args)
}

A LEMMA model validator inherits from the AbstractModelProcessor class from LEMMA’s
model processing framework. Its constructor receives a single string value, which identifies the
Java package for the framework to lookup implementation units of model processing phases fol-
lowing the IoC pattern (cf. Subsubsection 3.2.3). In Line 4, control over the model validator’s
flow of execution is delegated to the model processing framework by invoking the run method
and passing possible command-line parameters (args) to it.

Each LEMMA model processor requires a language description provider. That is, because
LEMMA'’s model processing framework relies on infrastructure components provided by Xcore
and Xtext (cf. Subsection 3.2) to parse LEMMA model files. However, since the infrastruc-
ture components are derived by Xcore and Xtext specific to a certain modeling language, the
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model processing framework needs to access them at runtime. This access is enabled by model
processor implementations via language description providers.

Listing 7 shows the language description provider for the Event Sourcing Validator, which
needs to parse mapping and service models in order to validate them (cf. Subsubsection 3.2.1).

Listing 7: Language description provider of the Event Sourcing Validator.

@LanguageDescriptionProvider
class DescriptionProvider : LanguageDescriptionProviderI {
override fun getLanguageDescription(forLanguageNamespace: String) : LanguageDescription? {
return when(forLanguageNamespace) {
MappingPackage.eNS_URI -> MAPPING_DSL_LANGUAGE_DESCRIPTION
ServicePackage.eNS_URI -> SERVICE DSL_LANGUAGE_DESCRIPTION
else -> null
}
}
}

val MAPPING_DSL_LANGUAGE_DESCRIPTION = XtextLanguageDescription(
MappingPackage.eINSTANCE,
MappingDslStandaloneSetup()

)

val SERVICE_DSL_LANGUAGE_DESCRIPTION = XtextLanguageDescription(
ServicePackage.eINSTANCE,
ServiceDslStandaloneSetup()

)

At model processor runtime, a language description provider is identified from the Java
implementation package of the model processor (cf. Listing 6) as a class with the @LanguageDe-
scriptionProvider annotation, which also implements the LanguageDescriptionProviderI
interface. The interface prescribes the getLanguageDescription method to be implemented.
It must return a LanguageDescription instance, which encapsulates the required Xcore and
Xtext infrastructure components, per supported model type of a model processor. The model
type is identified by its Ecore namespace (eNS_URI). In the excerpt in Listing 7, two language
descriptions are returned by the language description provider. MAPPING_DSL_LANGUAGE_DE-
SCRIPTION (cf. Lines 12 to 15) covers mapping models (cf. Table 1) and SERVICE_DSL_LAN-
GUAGE_DESCRIPTION targets service models.

Starting from the model processor entry point and language description provider implementa-
tions (cf. Listings 6 and 7), the model processor is enabled to parse LEMMA mapping and
service models, and handle them within the considered model processing phases (cf. Subsub-
section 3.2.3). Listing 8 shows an excerpt from the model validator for the Event Sourcing
technology model (cf. Subsubsection 3.1.1).

Listing 8: Constraint validation within the Event Sourcing Validator.

@SourceModelValidator(
validationMode = SourceModelValidationMode.XTEXT,
supportedFileExtensions = ["services"]

class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {
@Check
private fun checkProducer(operation: Operation) {
val eventSourcingAlias = operation.interface.microservice
.findAliasForTechnology("EventSourcing") ?: return
if (operation.hasServiceAspect(eventSourcingAlias, "Producer") &&
loperation.hasResultParameters(CommunicationType.ASYNCHRONOUS))
error("The Producer aspect may only be applied to operations with a result parameter"
ServicePackage.Literals.OPERATION__NAME)
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A model validator in LEMMA’s model processing framework is identified at runtime based
on the @SourceModelValidator annotation. Furthermore, it must inherit from the Abstract-
XtextSourceModelValidator, in case the validationMode is set to XTEXT, which is required
to parse ASTs from LEMMA models. The validation of parsed models then follows Xtext’s
Custom Validation mechanism'2?. That is, validations of model elements are realized within
methods that are annotated with @Check and specify a single parameter. If the type of the
parameter corresponds to a concept from the modeling language used to construct a parsed
model, the validation method will be invoked for each instance of the concept in the parsed
AST.

For example, the checkProducer method in Lines 6 to 14 of Listing 8 realizes the validation
of constraint C.3 (cf. Table 2). Therefore, it operates on the Operation concept from the
Service Modeling Language [23]. In Lines 8 and 9, checkProducer retrieves the alias of the
import [23] of the Event Sourcing technology model. In Lines 10 and 11, the passed microservice
Operation instance is checked for the existence of the Producer aspect from the Event Sourcing
technology model, as well as asynchronous outgoing parameters. If the aspect is present but
no result parameters were modeled, an error message is displayed to the modeler. As described
in Subsubsection 3.2.3, depending on how the Event Sourcing Validator was invoked the error
message is either written to standard output or displayed within the Eclipse editor for the
Service Modeling Language. Figure 1 shows the display of the validation error in Eclipse,
in case a violation of constraint C.3 is detected by the Event Sourcing Validator during Live
Validation!?.

@EventSourcing:: aspects.Producer(handlerName="AccountEventProducer")
sendAccountCreatedEvent(async in event : Account::Account.AccountCreatedEvent);

@ Live Validation: The Preducer aspect may only be applied to operations with a result parameter

Figure 1: Example of a constraint violation error detected by the Event Sourcing Validator for
constraint C.3 (cf. Table 2). The error is displayed directly in Eclipse at modeling time by
means of the Live Validation model processing phase (cf. Subsubsection 3.2.3).

4 Discussion

This section discusses our initial results from investigating the non-intrusive extension of LEMMA
with modeling support for architecture patterns. We structure our discussion based on the RQs
posed in Section 1.

4.1 Research Question 1: Pattern Integration Steps

RQ 1 focuses on the steps being required to extend LEMMA with architecture pattern support.
As described in Section 3, the integration process is twofold. First, a technology model needs
to be specified for each architecture pattern (cf. Subsection 3.1). The model captures the se-
mantic concepts of the architecture pattern, and enables their assignment to LEMMA domain

https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#validation
13To cause the error for the sake of illustration, the out keyword in Line 30 of Listing 4 was replaced with
LEMMA'’s in keyword [23].
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and service models (cf. Table 1). Given the flexibility of LEMMA'’s Technology Modeling Lan-
guage [20], upfront reasoning about the degree of technology-alignment of the captured pattern
is sensible. For example, the initial Event Sourcing and CQRS technology models (cf. Sub-
subsections 3.1.1 and 3.1.2) are technology-agnostic. Consequently, a third technology model,
which clusters technology for the required event-driven communication, is needed. Such a model
could, for example, target a persisting event broker such as Apache Kafka'®. Alternatively, an
existing Kafka technology model could be extended with Event Sourcing and CQRS pattern
concepts in the form of technology aspects. While this approach mixes technology-specific with
technology-agnostic aspects, and constrains the applicability of the resulting technology model
to Kafka, it would lower domain and service modeling complexity, because there exists only one
technology model, which clusters all relevant aspects at once.

The second step in the pattern integration process is the provisioning of model validators
(cf. Subsection 3.2). As illustrated in Subsubsection 3.3.3, each technology model should be
accompanied by exactly one model validator in the form a standalone executable Java archive
based on LEMMA'’s model processing framework. The validation of a pattern’s application
for conceptual compliance is then realized in dedicated validation methods. For the sake of
concern separation, each validation method should focus on a single modeling language concept
and pattern aspect. Given the IoC approach of the framework (cf. Subsubsection 3.2.3), new
validation methods can be added at a single, well-defined place, i.e., the model validator class (cf.
Listing 8). The invocation of validation methods is then triggered automatically by LEMMA’s
model processing framework. Another benefit of the framework’s adoption is its integration
with Eclipse via LSP. As a result, validation errors in models are directly displayed at modeling
time, and may immediately and interactively be fixed as the modeler types.

Since both integration steps do not require an adaption of any LEMMA modeling language,
the overall integration process is non-intrusive. Consequently, LEMMA may be extended with
support for new architecture patterns as required.

4.2 Research Question 2: Required Pattern Integration Artifacts

The required artifacts for architecture pattern integration with LEMMA follow directly from
the steps of the integration process (cf. Subsection 4.1). Hence, LEMMA modelers need to
be provided with a technology model and executable Java archive of the corresponding model
validator. Both artifacts may be shared across microservice teams, e.g., by means of a shared
repository [17]. Concerning the model validator, its code should also be made accessible to
transparently enable testing and fixing of issues.

4.3 Research Question 3: Complexity of the Pattern Integration Pro-
cess

In its current form, the process to non-intrusively extend LEMMA with support for architecture
patterns is not trivial. First, it requires upfront analysis of targeted architecture patterns
and their adoption in the microservice development process in order to construct sufficient
technology models. Second, knowledge of LEMMA'’s modeling languages and their concepts is
mandatory. Otherwise, the implementation of model validators will not be feasible, because
validation methods are aligned to modeling languages’ concepts (cf. Subsubsection 3.3.3).
However, LEMMA'’s model processing framework reliefs implementers from direct interaction

Mhttps://kafka.apache.org
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with Xcore and Xtext infrastructure components, e.g., for parsing, validation triggering, and
LSP client realization.

Nonetheless, the target group for extending LEMMA with architecture pattern support are
technology-savvy stakeholders in MSA engineering like microservice developers and software
architects. Once technology models and corresponding model validators have been realized,
they may be shared across the MSA development organization and we expect extensions to be
straightforward based on LEMMA’s model processing framework. However, a central action in
our future work is to aim for lowering the complexity of the extension process (cf. Section 6).

5 Related Work

Kallel et al. [11] present an approach to formalize architecture patterns as constraints in the
Object Constraint Language (OCL) [18], and use them to check for the correctness of patterns’
application at design time and runtime. For design time checking, UML-based architecture
models are validated for constraint satisfaction and thus pattern-compliance. For runtime
checking, Java meta-programs are generated from pattern-specific OCL constraints. These
meta-programs rely on Aspect-oriented Programming (AOP) [12] to automatically validate
Java objects at runtime for pattern-compliance. By contrast to our approach, the usage of
OCL for constraint-based architecture pattern specification has two advantages. First, OCL
is a dedicated language for constraint expression and thus provides concise language concepts
optimized for, e.g., AST traversal and filtering, as well as the definition of invariants. Second,
OCL models can be flexibly extended, e.g., when further pattern constraints become apparent
or new concepts need to be supported for an already formalized pattern. In the context of
LEMMA, OCL models could thus replace the manual implementation of model validators for
constraint checking (cf. Subsection 3.2). Instead, each pattern-specific technology model could
be accompanied by an OCL model that guides technology aspect application for correct pattern
usage. Code for validation methods (cf. Listing 8) could then be automatically derived from
OCL constraints, e.g., by means of Eclipse OCL'®. By contrast to the approach of Kallel et
al. [11], constraint violations could then be fixed interactively in Eclipse using the built-in Live
Validation phase of LEMMA’s model processing framework.

JDL! and MicroDSL [27] are modeling languages for MSA, which integrate technology
and pattern elements on the language level. JDL, for example, includes the openshiftName-
space and gatewayType keywords to enable modeling in the context of OpenShift'” or specify
API Gateways [16]. Similarly, MicroDSL provides keywords for the Load Balancer and Circuit
Breaker patterns [15]. While the consideration of technologies and patterns on the language
level fosters a modeling language’s expressivity, its learnability and stability decrease. That is,
because the languages come with an increased set of syntactic constructs and semantics [2]. For
example, in JDL each technology- or pattern-specific keyword has its own set of valid values
that need to be known in advance to construct valid models. Moreover, each new technology
or pattern requires a language extension. In addition, in case a technology or pattern is not
supported by the languages, users are required to reach out to languages’ developers for its inte-
gration or extend the languages themselves. Our Technology Modeling Language (cf. Table 1),
on the other hand, provides a means for non-intrusive language extension. Technology models
can be constructed by MSA modelers without the need to extend any of LEMMA’s modeling
languages (cf. Subsection 3.1). In addition, technologies and patterns can be constrained to the

Bhttps://projects.eclipse.org/projects/modeling.mdt.ocl
Ohttps://www. jhipster.tech/jdl
https://wuw.openshift.com
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necessary minimum, keeping the syntactic core of LEMMA’s modeling language comparatively
concise. Moreover, LEMMA’s model processing framework (cf. Subsection 3.2) supports the
subsequent implementation of model validators to ensure correctness of language extensions
formalized in technology models.

Cuadrado and Molina [4] present a phasing mechanism in the context of rule-based model
transformation languages such as ATL'8. Like in LEMMA’s model processing framework, the
phase concept is used to modularize coherent parts of a model transformation into logical stages
(cf. Subsubsection 3.2.3). To systematize the introduction of a phasing mechanism into rule-
based modeling languages, Cuadrado and Molina describe the relevant concepts as an abstract,
language-agnostic syntax, which shares similarities with the design concepts of the model pro-
cessing framework. First, a phase may define several parameters required for its execution.
Second, phases may be prevented from executing either explicitly by the caller or implicitly
because a precondition, like an expected parameter value, does not hold. Third, phases may
be dependent on each other and thus imply a certain execution order. By contrast to our ap-
proach, Cuadrado and Molina distinguish between primitive and composite phases. A primitive
phase defines production rules of a transformation, while a composite phase organizes several
primitive or other composite phases into logical units. LEMMA’s model processing framework
does not enable phase composition besides specifying phase ordering. Instead, we consider all
model processing phases as primitive phases. We expect the missing layer of indirection, i.e.,
the composition of phases from others, to facilitate the implementation of model processors for
MSA stakeholders without experience in MDE or model processing. Moreover, Cuadrado and
Molina do not present a framework to practically leverage their phasing mechanism.

6 Conclusion and Future Work

This paper presented a non-intrusive approach to extend our Language FEcosystem for Modeling
Microservice Architecture (LEMMA) with architecture pattern support. The approach lever-
ages LEMMA’s aspect mechanism to capture pattern concepts in the form of aspects within
dedicated models. Starting from these models, LEMMA domain and service models may be
flexibly augmented with pattern-specific aspects. The pattern-compliant application of aspects
is then validated by pattern-specific model validators realized with LEMMA’s model processing
framework. A model validator may be executed as a standalone application or connect with
model editors leveraging the Language Server Protocol to enable immediate and interactive
pattern validation and error fixing. We illustrated our approach on the example of the Event
Sourcing and Command Query Responsibility Segregation (CQRS) patterns. Furthermore, we
discussed it w.r.t. the required steps and artifacts for extending LEMMA with architecture
pattern support, as well as its complexity.

In future works, we aim to lower the complexity of our approach by relying on the Ob-
ject Constraint Language to specify constraints for pattern-specific aspects and automatically
generate code for pattern-specific model validators based on LEMMA’s model processing frame-
work. Moreover, we plan to further investigate the initial aspect models for the Event Sourcing
and CQRS patterns concerning their completeness and applicability. Additionally, we plan to
formalize further architecture patterns for their usage with LEMMA.

Bhttps://www.eclipse.org/atl
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