Generation of Container-Based Deployment Units Using an
Ecosystem of Microservice-Oriented Modeling Languages

Philip Wizenty and Florian Rademacher

IDiAL Institute, University of Applied Sciences and Arts Dortmund, Germany
philip.wizenty,florian.rademacher@fh-dortmund.de

Introduction. Microservice Architecture (MSA) promotes loose coupling between and high
cohesion in services, which is expected to lead to increased scalability and reliability [3]. How-
ever, to fully take advantage of those benefits the system needs to be deployed to a suitable
environment. Generally, a container-based environment like Kubernetes fosters the benefits
of MSA by increasing the scalability through horizontal scaling possibilities and self-healing
functions improving the reliability. However, to enable the deployment of MSA, container-
based infrastructure technology requires technology-specific configurations with a wide variety
of interdependent options. Thus, the complex configuration of container-based technology like
Kubernetes can lead to operational failure, often caused by improper configuration [2].

A potential solution to ease the deployment of MSA and to ensure the correctness of its con-
figuration is provided by Model-Driven Engineering (MDE) [1]. MDE enables the development
of models that capture software properties and functions at a level of abstraction above source
code. Therefore, the systems complexity is reduced with the goal to support the development
process by, e.g., facilitating architecture analysis and providing code generation means. [1].

LEMMA'! (Language Ecosystem for Modeling Microservice Architecture) is an MDE ap-
proach towards MSA engineering. It provides modeling languages tailored to MSA-specific
architecture viewpoints for specifying domain concepts, service composition and operation con-
figurations [4].

Problem Statement. The configuration of container-based deployments for MSA is a com-
plex and error-prone process [2]. There are a variety of technologies that can be used for the
deployment of the system. These not only have individual configuration options, but also differ
in the configuration format. In addition, the configuration of the deployment is distributed to
several different files, which will be called Deployment Units (DU) in the following. Usually a
DU includes service specific configuration files, Dockerfiles and build scripts. Additionally, there
are also configurations for service composition and orchestration, such as Docker-Compose or
Kubernetes files.

Contribution. LEMMA’s Operation Modeling Language (OML) enables developers to spec-
ify the deployment of microservices including their dependencies to infrastructural compo-
nents like a Service Discovery. Listing 1 specifies the deployment of the OrderService in
LEMMA’s OML. The service is part of an MSA-based online shop example. Line 1 imports the
OrderService defined in a LEMMA service model [4]. Line 2 imports the operation technology
description for the service deployment, e.g., kubernetes. Lines 3 to 6 specify the deployment
of the OrderService with an operationTechnology, which refers to the technology stack for
the deployment. The service is deployed in the OrderContainer with an openjdk operation
environment in a Docker Container defined in Line 5. Additionally, the model includes the
deployment of a DiscoveryService in Lines 7 to 9. The service is used by the OrderService

Ihttps://github.com/SeelabFhdo/lemma

https://github.com/SeelabFhdo/lemma

© 000Ut WN

Generation of Container-Based Deployment Units for MSA P. Wizenty and F.Rademacher

to communicate with other services. The LEMMA models and corresponding source code of
the example is published on GitHub?.

Listing 1: Example of an operation model.

import microservices from "order.services" as OrderService
import technology from "operation.technology" as operationTechnology
@technology (operationTechnology)
container Order deployment technology operationTechnology::_deployment.Kubernetes
with operation environment "docker/openjdk:11-jdk-slim"
deploys OrderService::v0l.de.fhdo.ms2020.0rderService {/* Specific Service Configuration. */}
@technology (operationTechnology)
DiscoeveryService is operationTechnology::_infrastructure.DiscoeveryService used by services
OrderService::v0l.de.fhdo.ms2020.0rderService {/* Specific DiscoveryService Configuration.*/}

Figure 1 depicts our approach of a code generation pipeline for the generation of container-
based DU’s by the usage of LEMMA’s OML for easing the deployment configuration. After
the specification of deployment-relevant configuration options in the operation model (cf. Fig-
ure 1). The model is transformed via a refinement model-to-model transformation [1] into an
intermediate operation model enhanced with additional deployment-relevant details regarding
the used technology and deployed services, e.g., the visibility or type of a microservice, tech-
nology specific protocol and data formats. Based on the transformed intermediate model, a
model-to-text transformation [1] is executed for performing the code generation. The presented
code generation pipeline currently supports the Docker and Kubernetes technology stacks by
creating DU’s including the extension of existing configuration files, the creation of Dockerfiles
and Build Scripts. Furthermore, for service composition and orchestration docker-compose and
kubernetes deployment file are also provided. From the operation model in Listing 1, which
comprises 27 Line of Code (LoC) without omissions, a total of 127 LoC could be generated.
This shows that a total of 5 lines of source code can be generated from one line of model code.
The efficiency of the code generator can be explained by the fact that the configuration of
DU’s for the Docker and Kubernetes technology stacks includes a span of different files with
interdependent options.

Model Code Generated Files
Transformation Generation AN
Operation Intermediate o,
Model Operation Model Extensionof Dockerfiles Build Scripts Docker Kubernetes
Configuration Compose Deployment

Figure 1: Workflow for generating deployment-related artifacts.

In our talk, we will extend the example of the online shop with additional components and
deploy them to a Kubernetes environment by the usage of the generated files.

References

[1] Benoit Combemale et al. Engineering modeling languages. Taylor & Francis, CRC Press, 2017.

I~

] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven design for cloud infras-
tructure DevOps. In 2016 IEEE Int. Conf. on Cloud Engineering (IC2E). IEEE, 2016.

Sam Newman. Building Microservices. O’Reilly Media, 2015.

ESE

Florian Rademacher, Jonas Sorgalla, Philip Wizenty, Sabine Sachweh, and Albert Ziindorf. Graphi-
cal and textual model-driven microservice development. In Microservices: Science and Engineering.,
pages 147-179. Springer, dec 2019.

2https://github.com/SeelabFhdo/microservices2020

https://github.com/SeelabFhdo/microservices2020

