
Ballerina and Jolie:
The Frontier of Microservices Programming

Anjana Fernando; Saverio Giallorenzo; Claudio Guidi; Sameera Jayasoma;
Balint Maschio; Jacopo Mauro; Fabrizio Montesi; Marco Montesi; Marco

Peressotti; Matthias Dieter Wallnöfer; Lakmal Warusawithana

What’s on the frontier?

● Service Orientation
● Communication Primitives
● Manifest Workflow
● Access point
● Clearly defined dependencies
● Use of API’s
● Messages types and value
● Interoperability
● Architectural design extraction
● Architectural programming
● Build-in observability

The content of this presentation is based on the syntax of jolie version 1.10.0 that has been released as a beta version

Balint Maschio
The Jolie Team
9-9-2020 Microservices Conference

https://www.jolie-lang.org/

Interfaces and message types

type Op1Request: void{

nodeA:string (regex(".*@.*\\..*"))

nodeB:string(enum(["hello","homer","simpsons"]))

}

type Op2Response:void{

nodeA:string

}

type Op2Request:void{

nodeA:int (ranges([1,4], [10,20]))

}

interface MyInterface{

RequestResponse:

op1 (Op1Request)(Op1Response)

OneWay:

op2(Op2Request)

}

This is an interface declaration in Jolie

• Definition of interfaces
• Definition of operation
• Definition of their types
• With some data validation mechanism build

(refined types)

What impact this can have:

• A single point to define the contract of the
service

• Contract first by design
• A strongly typed message definition reduce the

need of control implementation on the formal
validity of the data

Implementation

service FirstService (){

execution{ concurrent }

inputPort AccessPointA {

Location: “local”

Protocol: sodep

Interfaces: MyInterface

}

inputPort AccessPointB {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface

}

main{

[op1(request)(response){

response.nodeA =

request.nodeA + " " + response.nodeB

}]

[op2(request)(response)]{ ///do something }

}

}

Implementing a microservice

• Clear boundary of service implementation
• Definition of two separate access points

(inputPorts)
• Clear implementation area
• No extra code unmarshalling the incoming

message

What impact this can have:
• Multiple service implementation in the same file
• Multiple inputPorts in the same service with

different protocols defined
• Implementation is almost indipendent to the

communication protocol

Invoking other services

from MyPackage import MyInterface

service ClientService (){

outputPort CallingPort {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface

}

main{

request.nodeA = “my@email.com”

request.nodeB = “Hello”

op1@CallingPort(request)(response)

undef(request)

request.nodeA = 1

op2@CallingPort(request)

}

}

A service can also play as a client

• Definition of ouputPort (invoking endpoint)
• Specific primitives for service invocation

(SolicitResponse and OneWay)
• No Marshalling code

What impact this can have:

• It is possible to define multiple outputPorts in
the same service, thus it is possible to invoke
more services from within the same service

• We do not need anything about the
communication in the behaviour, just using the
communication primitive. All the
communication detauls are managed by the
ports

Architectural composition in Jolie

● Embedding
● Orchestration
● Aggregation
● Internal Service
● Couriers
● Rederiction
● Collections

Embedding

Embedding and orchestration
from MyPackage import MyInterface

service DummyService (){

execution{ concurrent }

embed firstService at FirsServicePort

outputPort CallingPort {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface }

inputPort EntryPointB {

Location: "socket://localhost:82"

Protocol: sodep

Interfaces: MyDummyInterface }

main{

[dummyOp(request)(response){

requestOp1.nodeA = request.someNodeA

requestOp1.nodeB = request.someNodeB

op1@CallingPort(requestOp1)(responseOp1)

requestOp2.nodeA = 1

op2@FirstServicePort(requestOp2)

response.someNodeA = responseOp1.nodeA

}]

}

}

Implementing an orchestrator is like
implementing a simple service

• Embedding of another service
(firstService)

• Implementation of orchestration flow

What impact this can have:

• Evident orchestration workflow
• External services and embedded services

are orchestrated similarly

Aggregation of services

op1@M

op1@A

op1
op2
op3

op1

op2

op3

op2@B

op3@C

Aggregation of services
from MyPackage import MyInterface

service ClientService (){

execution{ concurrent }

outputPort CallingPort {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface

}

inputPort EntryPointB {

Location: "socket://localhost:82"

Protocol: http

Interfaces: MyDummyInterface

Aggregates: CalligPort

}

main{

[dummyOp(request)(response){

//some implemetation

}]

}

}

It is just a line more in the input port

● Aggregations happens within an inputPort
which aggregates outputPorts

What impact this can have:

● We can expose different services operations
without replementing them or implementing
orchestrations

● Automatic protocol conversions among
inputOperatons and aggregated outputPorts

Couriers

Aggregated service

Aggregator

Extended message
which carries
additional context
infos (ex: security
tokens)

Message without
extension, forwarded
to the target service

Redirection

M

/a

/b

/c

Collections
ms1

ms2

ms3

Aggregator
+

Courier

…and all the rest

• Java
• There is a native possibility to integrate Java code into a

Jolie service (JavaServices)
• It is possible to run a Jolie service within an hosting

application server (Ex: JBoss)
• It is possible to send sodep messages to Jolie from a

third party Java application

• Javascript
• As for Java, it is possible to embed javascript code into a

Jolie service

• Text Editors
• Plugins for Atom and Sublime Text

• HTTP and HTTPs
• HTTP and HTTPs are supported protocols

• SOAP Web Services
• SOAP is a supported protocol
• jolie2wsdl and wsdl2jolie are tools which permit to

convert Jolie interface into WSDL documents and
viceversa

• JSON
• JSON format is supported as format for the

http Protocol

• Web
• Leonardo is a web server written in Jolie.

• REST
• Thanks to the usage JSON messages can be

exploited just parameterizing a port
• If necessary, it is possible to implement a

standard REST services by exploiting Jester,
a REST router for jolie services

• Databases
• SQL databases can be easily connected to a

Jolie service using JDBC libraries.
• MongoDB connector

….

Supporters and stakeholders

Jolie in the real world…

• Used in production
environments

• In Academy research about
Jolie is still going on

Useful links

• Jolie website
• https://www.jolie-lang.org/

• Jolie documentation
• https://jolielang.gitbook.io/docs/

• Jolie Discord Community
• https://discord.gg/yQRTMNX

• Social
• Fb: https://www.facebook.com/jolieprogramminglanguage
• Twitter: https://twitter.com/jolielang

Anjana Fernando, WSO2 Inc. | @lafernando AGILE
NETWORK AWARE

Hello World

caller hello

GET

Hello World

Annotations

caller hello

POST (name)

Hello, name!

Connectors

caller RekService

POST (status)

response

Amazon Rekn

detectText (input)

response

Concurrency

Async I/O

This looks like a typical blocking call,
but it’s a bit more than that…

Transparent non-blocking I/O usage promotes optimal resource usage and handling of large
number of active connections

Docker & Kubernetes

AWS Lambda

Azure Functions

Observability

https://ballerina.io/learn/by-example/

https://ballerina.io/learn/by-example/

 Learn more

 Open source

 Get support

http://ballerina.io

Stack Overflow - #ballerina tag
Slack - https://ballerina.io/community/slack/

 Demos https://github.com/lafernando/samples/tree/master/ballerina/aws-demo
https://github.com/lafernando/samples/tree/master/ballerina/azure/ocr-serverless

http://ballerina.io
http://github.com/ballerina-lang/ballerina
https://github.com/lafernando/samples/tree/master/ballerina/aws-demo
https://github.com/lafernando/samples/tree/master/ballerina/azure/ocr-serverless

	Ballerina and Jolie: �The Frontier of Microservices Programming
	What’s on the frontier?
	Diapositiva numero 3
	Interfaces and message types
	Implementation
	Invoking other services
	Architectural composition in Jolie
	 Embedding
	 Embedding and orchestration
	 Aggregation of services
	 Aggregation of services
	 Couriers
	 Redirection
	 Collections
	 …and all the rest
	 Supporters and stakeholders
	 Useful links

