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What’s on the frontier?

● Service Orientation
● Communication Primitives
● Manifest Workflow
● Access point 
● Clearly defined dependencies 
● Use of API’s
● Messages types and value
● Interoperability
● Architectural design extraction  
● Architectural programming
● Build-in observability



The content of this presentation is based on the syntax of jolie version 1.10.0 that has been released as a beta version  
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Interfaces and message types 

type Op1Request: void{

nodeA:string ( regex(".*@.*\\..*") )

nodeB:string( enum(["hello","homer","simpsons"]))

}

type Op2Response:void{

nodeA:string

}

type Op2Request:void{

nodeA:int ( ranges( [1,4], [10,20]) )

}

interface MyInterface{

RequestResponse:

op1 (Op1Request)(Op1Response)

OneWay:

op2(Op2Request)

}

This is an interface declaration in Jolie

• Definition of interfaces
• Definition of operation 
• Definition of their types
• With some data validation mechanism build 

(refined types) 

What impact this can have:

• A single point to define the contract of the 
service

• Contract first by design
• A strongly typed message definition reduce the 

need of control implementation on the formal 
validity of the data



Implementation

service FirstService (){

execution{ concurrent }

inputPort AccessPointA {

Location: “local”

Protocol: sodep

Interfaces: MyInterface

}

inputPort AccessPointB {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface

}

main{

[op1(request)(response){

response.nodeA = 

request.nodeA + " " + response.nodeB

}]

[op2(request)(response)]{ ///do something }

}

}

Implementing a microservice

• Clear boundary of service implementation
• Definition of two separate access points 

(inputPorts) 
• Clear implementation area 
• No extra code unmarshalling the incoming 

message

What impact this can have:
• Multiple service implementation in the same file
• Multiple inputPorts in the same service with 

different protocols defined
• Implementation is almost indipendent to the 

communication protocol  



Invoking other services

from MyPackage import MyInterface

service ClientService (){

outputPort CallingPort {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface

}

main{

request.nodeA = “my@email.com”

request.nodeB = “Hello”

op1@CallingPort(request)(response)

undef(request) 

request.nodeA = 1 

op2@CallingPort(request)      

}

}

A service can also play as a client

• Definition of ouputPort (invoking endpoint)
• Specific primitives for service invocation 

(SolicitResponse and OneWay)
• No Marshalling code

What impact this can have:

• It is possible to define multiple outputPorts in 
the same service, thus it is possible to invoke 
more services from within the same service

• We do not need anything about the 
communication in the behaviour, just using the 
communication primitive. All the 
communication detauls are managed by the 
ports



Architectural composition in Jolie 

● Embedding
● Orchestration 
● Aggregation 
● Internal Service
● Couriers
● Rederiction
● Collections 



Embedding



Embedding and orchestration 
from MyPackage import MyInterface

service DummyService (){

execution{ concurrent }

embed firstService at FirsServicePort

outputPort CallingPort {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface }

inputPort EntryPointB {

Location: "socket://localhost:82"

Protocol: sodep

Interfaces: MyDummyInterface }

main{

[ dummyOp(request)(response){

requestOp1.nodeA =  request.someNodeA

requestOp1.nodeB = request.someNodeB

op1@CallingPort(requestOp1)(responseOp1)

requestOp2.nodeA = 1 

op2@FirstServicePort(requestOp2) 

response.someNodeA = responseOp1.nodeA      

}]

}

}

Implementing an orchestrator is like
implementing a simple service

• Embedding of another service 
(firstService)

• Implementation of orchestration flow 

What impact this can have:

• Evident orchestration workflow 
• External services and embedded services 

are orchestrated similarly



Aggregation of services
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Aggregation of services
from MyPackage import MyInterface

service ClientService (){

execution{ concurrent }

outputPort CallingPort {

Location: "socket://localhost:80"

Protocol: http

Interfaces: MyInterface

}

inputPort EntryPointB {

Location: "socket://localhost:82"

Protocol: http

Interfaces: MyDummyInterface

Aggregates: CalligPort

}

main{

[dummyOp(request)(response){

//some implemetation

}]

}

}

It is just a line more in the input port

● Aggregations happens within an inputPort
which aggregates outputPorts

What impact this can have:

● We can expose different services operations 
without replementing them or implementing 
orchestrations

● Automatic protocol conversions among 
inputOperatons and aggregated outputPorts



Couriers

Aggregated service

Aggregator

Extended message
which carries
additional context
infos (ex: security 
tokens)

Message without
extension, forwarded
to the target service



Redirection
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…and all the rest

• Java
• There is a native possibility to integrate Java code into a 

Jolie service (JavaServices)
• It is possible to run a Jolie service within an hosting 

application server (Ex: JBoss) 
• It is possible to send sodep messages to Jolie from a 

third party Java application

• Javascript
• As for Java, it is possible to embed javascript code into a 

Jolie service

• Text Editors
• Plugins for Atom and Sublime Text

• HTTP and HTTPs
• HTTP and HTTPs are supported protocols

• SOAP Web Services
• SOAP is a supported protocol
• jolie2wsdl and wsdl2jolie are tools which permit to 

convert Jolie interface into WSDL documents and 
viceversa

• JSON
• JSON format is supported as format for the 

http Protocol

• Web
• Leonardo is a web server written in Jolie.

• REST
• Thanks to the usage JSON messages can be 

exploited just parameterizing a port
• If necessary, it is possible to implement a 

standard REST services by exploiting Jester, 
a REST router for jolie services

• Databases
• SQL databases can be easily connected to a 

Jolie service using JDBC libraries.
• MongoDB connector

….



Supporters and stakeholders

Jolie in the real world…

• Used in production 
environments

• In Academy research about
Jolie is still going on 



Useful links

• Jolie website
• https://www.jolie-lang.org/

• Jolie documentation
• https://jolielang.gitbook.io/docs/

• Jolie Discord Community
• https://discord.gg/yQRTMNX

• Social
• Fb: https://www.facebook.com/jolieprogramminglanguage
• Twitter: https://twitter.com/jolielang
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Hello World



caller hello

GET

Hello World





Annotations



caller hello

POST (name)

Hello, name!





Connectors



caller RekService

POST (status)

response

Amazon Rekn

detectText (input)

response







Concurrency







Async I/O



This looks like a typical blocking call, 
but it’s a bit more than that… 

Transparent non-blocking I/O usage promotes optimal resource usage and handling of large 
number of active connections



Docker & Kubernetes







AWS Lambda





Azure Functions







Observability







https://ballerina.io/learn/by-example/

https://ballerina.io/learn/by-example/


    Learn more

    Open source

    Get support

http://ballerina.io

Stack Overflow - #ballerina tag 
Slack - https://ballerina.io/community/slack/

    Demos https://github.com/lafernando/samples/tree/master/ballerina/aws-demo
https://github.com/lafernando/samples/tree/master/ballerina/azure/ocr-serverless

http://ballerina.io
http://github.com/ballerina-lang/ballerina
https://github.com/lafernando/samples/tree/master/ballerina/aws-demo
https://github.com/lafernando/samples/tree/master/ballerina/azure/ocr-serverless
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