
MIGRATING MONOLITHIC
APPLICATIONS TO MICROSERVICES-
BASED CUSTOMIZABLE MULTI-
TENANT APPLICATIONS

Sindre Grønstøl Haugeland1, Phu H. Nguyen2*, Franck Chauvel2 , Hui Song2

1 University of Oslo, Oslo, Norway, sindrgro@ifi.uio.no
2 SINTEF, Oslo, Norway, firstname.lastname@sintef.no , * Presenter

Online @ the International Conference on Microservices,
September 8-10, 2020

mailto:sindrgro@ifi.uio.no
mailto:firstname.lastname@sintef.no

This talk presents 1) Why migrating to Microservices; 2) Our Migration
Approach ; and 3) Lessons learnt and Ideas for Future Work

Why migrating to Microservices?

Our Migration Approach

Conclusion & Future Work

2

Why migrating to Microservices?

3

TWO main reasons for adopting our
migration approach here

The FIRST reason is a common one: All the benefits
of the Microservices architecture, e.g.,

• Loosely coupled, highly cohesive services,
that can be deployed and developed independently

• Solves some of the issues with monolithic applications with
regards to speed of delivery and maintaniability

• You name it…

4

The SECOND reason is a very specific one

To enable (deep) customization in the multi-tenant
Software-as-a-Service (SaaS) context!

• Inspired from our R&D project with industry.

• How can microservices be used for tenant-specific
customization?
• Separation of application layers

• Separation of functional logic

• Independent context

5

UI

Standard executable
code

Custom
code

Client

Server

Tables & fields

Tables &
Fields

More background about enabling deep
customization for multi-tenant SaaS

• P. H. Nguyen, H. Song, F. Chauvel, R. Muller, S. Boyar, and E. Levin, “Using microservices for non-intrusive
customization of multi-tenant SaaS,” in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn,
Estonia, Aug. 2019, pp. 905–915, doi: 10.1145/3338906.3340452.

• H. Song, P. H. Nguyen, and F. Chauvel, “Using Microservices to Customize Multi-Tenant SaaS: From Intrusive
to Non-Intrusive,” p. 18 pages, 2020, doi: 10.4230/OASICS.MICROSERVICES.2017-2019.1.

• H. Song, P. H. Nguyen, F. Chauvel, J. Glattetre, and T. Schjerpen, “Customizing Multi-Tenant SaaS by
Microservices: A Reference Architecture,” in 2019 IEEE International Conference on Web Services (ICWS),
Jul. 2019, pp. 446–448, doi: 10.1109/ICWS.2019.00081.

• H. Song, F. Chauvel, and P. H. Nguyen, “Using Microservices to Customize Multi-tenant Software-as-a-
Service,” in Microservices: Science and Engineering, A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M.
Mazzara, V. Rivera, and A. Sadovykh, Eds. Cham: Springer International Publishing, 2020, pp. 299–331.6

Existing Migration Approaches
Strangler Approach

• Wraps application in
intercepting layer

• Redirect incoming
requests to extracted
services

Blueprint Approach

• Three phases
– Analysis

– Adaption of infrastructure

– Re-implementation

• Template for further
modification

7Eberhard Wolff. Migrating monoliths to microservices: A survey of approaches. 2019.

“StranglerFigApplication” martinfowler.com. https://martinfowler.com/bliki/StranglerFigApplication.html
(accessed Jun. 13, 2020).

Existing Approaches

8

The re-engineering process for enabling multi-tenancy in a
single tenant legacy application by applying a combination of
enterprise application architecture patterns (Fowler 2003).

Fowler, M. (2003). Patterns of enterprise application
architecture. Boston, Addison-Wesley.

• Single to Multi-tenant approach
• Split into three steps

• Convert to MVC
• Introduce tenant-specific Model, View

and Controller
• Tenant-specific QA

Furda, Andrei, et al. "Reengineering data-centric information systems
for the cloud–a method and architectural patterns promoting
multitenancy." Software Architecture for Big Data and the Cloud.
Morgan Kaufmann, 2017. 227-251.

Our Migration Approach

9

Suggested migration approach to MSA-
based customizable multi-tenant SaaS

10

- Analyse
- Decompose

- Add Supporting
infrastructure

- Add MSA and Multi-
tenancy Storage

- Add Multi-tenant
infrastructure that is
important for customization
(e.g., IAM service)

- Migrate functionality
- Add support for

customization

A Running Example: The SportStore Application

11

Shopping Cart View:

Product Catalog View:

Checkout View

Sanderson, S. (2011). Pro Asp. net MVC 2 Framework. Apress.

Phase 1:
Reverse
Engineering

• Analysis

• Looking at source code to
determine the
architecture

• Finding internal
dependencies in the
application

12

Phase 1:
Reverse
Engineering
Decompose into services:

Identify potential services
• Cart

• ProductCatalog

• Ordering

Find boundary resources
• Product

• Cartline

13

Phase 2:
Adapt
Infrastructure

Additional Infrastructure

For MSA

• API-Gateway

• Message Broker/Exchange

For Multi-Tenancy

• Identity Manager

• Tenant Manager

14

Phase 3:
Re-Implementation

Target architecture
• Services behind API-Gateway

• Message broker for
orchestration between services

Customization Ready
• Separation of application layers

• Use IAM and Tenant Manager
to retrive tenant customization

15

The migration

Initial State:

• Monolithic

• UI, Logic and Storage in
one deployment

16

The migration

Second state:
• Start extracting services

• Autonomous deployment

• Reroute through Gateway

17

The migration

18

Third state:
• Second service extracted
• Introduce MB
• Orchestration between

services

The migration

• Fourth state:
• Third service extracted

• Application has migrated to
microservices

19

The migration

• Fifth state:
• All services extracted

• Additional infrastructure for multi-
tenancy added

20

Results

21

Final
Architecture

Results

22

Separation of
Layers

Results

24

Customization
& Tenant-
Isolation

Nordli E.T., Nguyen P.H., Chauvel F., Song H. (2020) Event-Based Customization of Multi-tenant SaaS Using Microservices. In:
Bliudze S., Bocchi L. (eds) Coordination Models and Languages. COORDINATION 2020. Lecture Notes in Computer Science,
vol 12134. Springer, Cham. https://doi.org/10.1007/978-3-030-50029-0_11

P. H. Nguyen, H. Song, F. Chauvel, R. Muller, S. Boyar, and E. Levin, “Using microservices for non-intrusive customization of multi-
tenant SaaS,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Tallinn, Estonia, Aug. 2019, pp. 905–915, doi: 10.1145/3338906.3340452.

25

Tenant isolation for security, especially together
with deep customization enabled

• We can manage all the tenants’ customization microservices, in how they are
authorized to customize the main product for a specific tenant,

• Need administrating and monitoring the customization microservices at
runtime.

• Deploying customization microservices on separate containers/clusters/hosts
for different tenants and the main product is also very important for tenant
isolation.

Tenant Isolation at app level and cluster level
• Ralph Squillace had a talk on Leap 2019 in Redmond on “Slicing and Dicing: Tenants and

Azure Kubernetes Service (AKS)”. He discussed tenant isolation with regard to
Kubernetes and Docker isolation. He concluded that Tenant isolation must be handled
at an application level.

• Furthermore, separate clusters/hosts should be used to achieve adequate isolation, as
Docker shares cores without adequate virtualization isolation.
(https://www.microsoft.com/nb-no/leap/default.aspx)
https://docs.microsoft.com/en-us/azure/aks/best-practices

26

https://www.microsoft.com/nb-no/leap/default.aspx
https://docs.microsoft.com/en-us/azure/aks/best-practices

Conclusion & Future Work

27

Conclusion & Future Work

28

The work presented in this talk has received funding from the Research Council of Norway under the grant agreement numbers 256594
(Cirrus).

1) Our Approach has combined migration to MSA and transition
to Multi-tenancy with an aim for enabling customization;

2) The main goal is to add the necessary infrastructure to allow (deep)
customization of the application behaviour in multi-tenant SaaS context;

3) The target MSA-based multi-tenant SaaS is suitable to enable tenant-specific deep
customization using tenant-specific customization microservices.

Tenant-isolation must be at app level and cluster level. We are still working on a
systematic approach for tenant isolation.

Technology for a better society

	Migrating Monolithic Applications to Microservices-based Customizable Multi-tenant Applications�
	Slide Number 2
	Slide Number 3
	TWO main reasons for adopting our migration approach here
	The SECOND reason is a very specific one
	More background about enabling deep customization for multi-tenant SaaS
	Existing Migration Approaches
	Existing Approaches
	Slide Number 9
	Suggested migration approach to MSA-based customizable multi-tenant SaaS
	A Running Example: The SportStore Application
	Phase 1:�Reverse Engineering
	Phase 1:�Reverse Engineering
	Phase 2:�Adapt Infrastructure
	Phase 3:�Re-Implementation
	The migration
	The migration
	The migration
	The migration
	The migration
	Results
	Results
	Results
	Tenant isolation for security, especially together with deep customization enabled
	Tenant Isolation at app level and cluster level
	Slide Number 27
	Slide Number 28
	Slide Number 29

