
A Non-Intrusive Approach to
Extend Microservice Modeling Languages with
Architecture Pattern Support

Third International Conference on Microservices (Microservices 2020)

Florian Rademacher 1

florian.rademacher@fh-dortmund.de

September 8–10, 2020

1University of Applied Sciences and Arts Dortmund, IDiAL Institute

mailto:florian.rademacher@fh-dortmund.de


Table of Contents

Introduction

Extending LEMMA with Architecture Pattern Support

Future Work



Table of Contents

Introduction

Extending LEMMA with Architecture Pattern Support

Future Work

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 1



Introduction

• Introduction

• Microservice Architecture (MSA) introduces challenges in the design,
implementation, and operation of an application [10, 11, 3]

• Design: e.g., efficient service tailoring
• Implementation: e.g., manage technology heterogeneity
• Operation: e.g., maintain deployment and operation infrastructure

� Line of Research
Investigate architecture modeling languages [9] to support in coping with challenges.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 2



Introduction

• Introduction

• Microservice Architecture (MSA) introduces challenges in the design,
implementation, and operation of an application [10, 11, 3]

• Design: e.g., efficient service tailoring
• Implementation: e.g., manage technology heterogeneity
• Operation: e.g., maintain deployment and operation infrastructure

� Line of Research
Investigate architecture modeling languages [9] to support in coping with challenges.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 2



Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• LEMMA Model Examples
Domain Model

1 // Model file: Banking.data
2 context Banking {

3 structure Account<entity> {

4 long id<identifier>,

5 Person owner,

6 double balance

7 }

8
9 structure Person {

10 string firstname,

11 string lastname,

12 date birthday

13 }

14 }

Service Model
1// Model file: Banking.services
2import datatypes from "Banking.data" as Domain

3functional microservice org.example.BankingService {

4interface AccountManagement {

5---

6API endpoint for creating a new account

7@required account The new account

8---

9createAccount(

10sync in account : Domain::Banking.Account,

11sync out accountId : long
12);

13}

14}

• By intent, no integrated modeling concepts for technologies (e.g., JDL2) and patterns
(e.g., MicroDSL [12] or MiSAR [1])⇒ Keep language core concise, foster learnability

2https://www.jhipster.tech/jdl
Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 4

https://www.jhipster.tech/jdl


Introduction

• LEMMA Model Examples
Domain Model

1 // Model file: Banking.data
2 context Banking {

3 structure Account<entity> {

4 long id<identifier>,

5 Person owner,

6 double balance

7 }

8
9 structure Person {

10 string firstname,

11 string lastname,

12 date birthday

13 }

14 }

Service Model
1// Model file: Banking.services
2import datatypes from "Banking.data" as Domain

3functional microservice org.example.BankingService {

4interface AccountManagement {

5---

6API endpoint for creating a new account

7@required account The new account

8---

9createAccount(

10sync in account : Domain::Banking.Account,

11sync out accountId : long
12);

13}

14}

• By intent, no integrated modeling concepts for technologies (e.g., JDL2) and patterns
(e.g., MicroDSL [12] or MiSAR [1])⇒ Keep language core concise, foster learnability

2https://www.jhipster.tech/jdl
Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 4

https://www.jhipster.tech/jdl


Introduction

• LEMMA Model Examples
Domain Model

1 // Model file: Banking.data
2 context Banking {

3 structure Account<entity> {

4 long id<identifier>,

5 Person owner,

6 double balance

7 }

8
9 structure Person {

10 string firstname,

11 string lastname,

12 date birthday

13 }

14 }

Service Model
1// Model file: Banking.services
2import datatypes from "Banking.data" as Domain

3functional microservice org.example.BankingService {

4interface AccountManagement {

5---

6API endpoint for creating a new account

7@required account The new account

8---

9createAccount(

10sync in account : Domain::Banking.Account,

11sync out accountId : long
12);

13}

14}

• By intent, no integrated modeling concepts for technologies (e.g., JDL2) and patterns
(e.g., MicroDSL [12] or MiSAR [1])⇒ Keep language core concise, foster learnability

2https://www.jhipster.tech/jdl
Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 4

https://www.jhipster.tech/jdl


Introduction

• LEMMA Model Examples

Domain Model
1 // Model file: Banking.data
2 context Banking {

3 structure Account<entity> {

4 long id<identifier>,

5 Person owner,

6 double balance

7 }

8
9 structure Person {

10 string firstname,

11 string lastname,

12 date birthday

13 }

14 }

Service Model (with technology metadata)
1// Model file: Banking.services
2import datatypes from "Banking.data" as Domain

3import technology from "Spring.technology" as spring

4@technology(spring)

5functional microservice org.example.BankingService {

6interface AccountManagement {

7---

8API endpoint for creating a new account

9@required account The new account

10---

11@endpoints(spring::_protocols.rest: "/accounts";)

12@spring::_aspects.PostMapping

13createAccount(

14sync in account : Domain::Banking.Account,

15sync out accountId : long
16);

17}

18}

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 5



Introduction

• What is LEMMA usable for?

• Code generation [7]
• Semi-automatic transformation of tactical Domain-driven Design models into

executable microservices [2, 6]
• Reconstruction and model-based quality analysis of microservice architectures [5]
 Now: Support integration of architecture patterns, e.g., Event Sourcing or CQRS [8],

in models without having to adapt LEMMA’s modeling languages

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 6



Introduction

• What is LEMMA usable for?

• Code generation [7]
• Semi-automatic transformation of tactical Domain-driven Design models into

executable microservices [2, 6]
• Reconstruction and model-based quality analysis of microservice architectures [5]
 Now: Support integration of architecture patterns, e.g., Event Sourcing or CQRS [8],

in models without having to adapt LEMMA’s modeling languages

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 6



Table of Contents

Introduction

Extending LEMMA with Architecture Pattern Support

Future Work

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 7



Extending LEMMA with Architecture Pattern Support

• Extending LEMMA with Architecture Pattern Support

x Flexible, need-based pattern ad-
dition/usage

Goals

r Construct a pattern-specific tech-
nology model

Solution Steps

x Check pattern compliance at de-
sign time

x Interactive fixing of pattern com-
pliance violations during model con-
struction

r Implement a pattern-specific
model validator with LEMMA’s
model processing framework. The
framework integrates with the Lan-
guage Server Protocol (LSP)3.

3https://microsoft.github.io/language-server-protocol

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 8

https://microsoft.github.io/language-server-protocol


Extending LEMMA with Architecture Pattern Support

• Extending LEMMA with Architecture Pattern Support

x Flexible, need-based pattern ad-
dition/usage

Goals

r Construct a pattern-specific tech-
nology model

Solution Steps

x Check pattern compliance at de-
sign time

x Interactive fixing of pattern com-
pliance violations during model con-
struction

r Implement a pattern-specific
model validator with LEMMA’s
model processing framework. The
framework integrates with the Lan-
guage Server Protocol (LSP)3.

3https://microsoft.github.io/language-server-protocol

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 8

https://microsoft.github.io/language-server-protocol


Extending LEMMA with Architecture Pattern Support

• Extending LEMMA with Architecture Pattern Support

x Flexible, need-based pattern ad-
dition/usage

Goals

r Construct a pattern-specific tech-
nology model

Solution Steps

x Check pattern compliance at de-
sign time

x Interactive fixing of pattern com-
pliance violations during model con-
struction

r Implement a pattern-specific
model validator with LEMMA’s
model processing framework. The
framework integrates with the Lan-
guage Server Protocol (LSP)3.

3https://microsoft.github.io/language-server-protocol

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 8

https://microsoft.github.io/language-server-protocol


Extending LEMMA with Architecture Pattern Support

• Extending LEMMA with Architecture Pattern Support

x Flexible, need-based pattern ad-
dition/usage

Goals

r Construct a pattern-specific tech-
nology model

Solution Steps

x Check pattern compliance at de-
sign time

x Interactive fixing of pattern com-
pliance violations during model con-
struction

r Implement a pattern-specific
model validator with LEMMA’s
model processing framework. The
framework integrates with the Lan-
guage Server Protocol (LSP)3.

3https://microsoft.github.io/language-server-protocol

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 8

https://microsoft.github.io/language-server-protocol


Extending LEMMA with Architecture Pattern Support

• Extending LEMMA with Architecture Pattern Support

x Flexible, need-based pattern ad-
dition/usage

Goals

r Construct a pattern-specific tech-
nology model

Solution Steps

x Check pattern compliance at de-
sign time

x Interactive fixing of pattern com-
pliance violations during model con-
struction

r Implement a pattern-specific
model validator with LEMMA’s
model processing framework. The
framework integrates with the Lan-
guage Server Protocol (LSP)3.

3https://microsoft.github.io/language-server-protocol

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 8

https://microsoft.github.io/language-server-protocol


Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern [8]
• Event Producer concept:

1. Event producers are microservice operations that create and send domain events
2. The sending of domain events happens asynchronously

Event Producers in LEMMA
Event Producers need to be modeled as microservice operations with an
asynchronous result parameter

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 9



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern [8]
• Event Producer concept:

1. Event producers are microservice operations that create and send domain events
2. The sending of domain events happens asynchronously

Event Producers in LEMMA
Event Producers need to be modeled as microservice operations with an
asynchronous result parameter

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 9



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Construct technology model

1 // Model file name: EventSourcing.technology
2 technology EventSourcing {

3 service aspects {

4 aspect Producer for operations;
5 }

6 }

Listing 1: LEMMA technology model for the Event Sourcing pattern.

Event Producers may be modeled as mi-
croservice operations (structural constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 10



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Construct technology model

1 // Model file name: EventSourcing.technology
2 technology EventSourcing {

3 service aspects {

4 aspect Producer for operations;
5 }

6 }

Listing 1: LEMMA technology model for the Event Sourcing pattern.

Event Producers may be modeled as mi-
croservice operations (structural constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 10



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Apply technology model

1 // Model file name: Banking.services
2 import datatypes from "Banking.data" as Domain

3 import technology from "EventSourcing.technology" as EventSourcing

4
5 @technology(EventSourcing)

6 functional microservice org.example.BankingService {

7 @EventSourcing::_aspects.Producer

8 sendAccountCreatedEvent(

9 async out event : Banking.AccountCreatedEvent

10 );

11 }

Listing 2: LEMMA technology model for the Event Sourcing pattern.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 11



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator
• LEMMA Live Validation: Connect with IDE via LSP and display markers for source

model validation errors

Figure 1: Pattern constraint violation displayed at design time in Eclipse

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 13



Table of Contents

Introduction

Extending LEMMA with Architecture Pattern Support

Future Work

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 14



Future Work

• Future Work
• Lower complexity of pattern integration process

 Employ Object Constraint Language (OCL) [4] to specify semantic pattern constraints
 Generate LEMMA model validators from OCL models

• Capture additional patterns for use with LEMMA, e.g., Saga and API Composition [8]

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 15



Future Work

• Future Work
• Lower complexity of pattern integration process

 Employ Object Constraint Language (OCL) [4] to specify semantic pattern constraints
 Generate LEMMA model validators from OCL models

• Capture additional patterns for use with LEMMA, e.g., Saga and API Composition [8]

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 15



Literature

[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. “Towards Micro Service
Architecture Recovery: An Empirical Study.” In:
2018 IEEE International Conference on Software Architecture (ICSA). IEEE,
2018, pp. 47–56.

[2] Eric Evans. Domain-Driven Design. Addison-Wesley, 2004.

[3] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. “Building a
Collaborative
Culture: A Grounded Theory of Well Succeeded DevOps Adoption in Practice.” In:
Proc. of the 12th ACM/IEEE Int. Symp. on Empirical Softw. Eng. and Measurement.
ESEM ’18. Oulu, Finland: ACM, 2018, 6:1–6:10.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 16



Literature

[4] OMG. Object Constraint Language Version 2.4. Standard formal/2014-02-03.
Object Management Group, 2014.

[5] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. “A Modeling Method
for Systematic Architecture Reconstruction of Microservice-Based Software
Systems.” In: Enterprise, Business-Process and Information Systems Modeling.
Ed. by Selmin Nurcan et al. Springer, May 2020, pp. 311–326.

[6] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. “Deriving
Microservice Code from Underspecified Domain Models Using DevOps-Enabled
Modeling Languages and Model Transformations.” In:
Proc. of the 46th Euromicro Conf. on Softw. Eng. and Advanced Applications (SEAA).
IEEE, 2020, pp. 229–236.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 17



Literature

[7] Florian Rademacher et al. “Graphical and Textual Model-Driven Microservice
Development.” In: Microservices: Science and Engineering. Ed. by
Antonio Bucchiarone et al. Springer, 2020, pp. 147–179.

[8] Chris Richardson. Microservices Patterns. First. Manning Publications, 2019.

[9] Davide Di Ruscio et al. “Developing next generation ADLs through MDE
techniques.” In:
2010 ACM/IEEE 32nd International Conference on Software Engineering. Vol. 1.
IEEE, 2010, pp. 85–94.

[10] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel.
“The pains and gains of microservices: A Systematic grey literature review.” In:
Journal of Systems and Software 146 (2018). Elsevier, pp. 215–232.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 18



Literature

[11] Davide Taibi and Valentina Lenarduzzi. “On the Definition of Microservice Bad
Smells.” In: IEEE Software 35.3 (May 2018). IEEE, pp. 56–62.

[12] Branko Terzić et al. “Development and evaluation of MicroBuilder: a
Model-Driven tool for the specification of REST Microservice Software
Architectures.” In: Enterprise Information Systems 12.8-9 (2018). Taylor &
Francis, pp. 1034–1057. eprint:
https://doi.org/10.1080/17517575.2018.1460766.

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 19

https://doi.org/10.1080/17517575.2018.1460766

	Introduction
	Extending LEMMA with Architecture Pattern Support
	Future Work
	Literature
	References

