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Introduction

• Introduction

• Microservice Architecture (MSA) introduces challenges in the design,
implementation, and operation of an application [10, 11, 3]

• Design: e.g., efficient service tailoring
• Implementation: e.g., manage technology heterogeneity
• Operation: e.g., maintain deployment and operation infrastructure

� Line of Research
Investigate architecture modeling languages [9] to support in coping with challenges.
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Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• Development of LEMMA1

x Mitigate complexity of MSA engi-
neering for stakeholder groups

Goals

 Provide modeling languages that
are aligned to stakeholder concerns

Solution Building Blocks

x Balance conceptual design and
technology-specific implementation

 Provide selective level of technol-
ogy abstraction

x Automate architecting and imple-
mentation tasks

 Provide framework for model pro-
cessor implementation

1Language Ecosystem for Modeling Microservice Architecture (�https://fh.do/lemma)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 3

https://fh.do/lemma


Introduction

• LEMMA Model Examples
Domain Model

1 // Model file: Banking.data
2 context Banking {

3 structure Account<entity> {

4 long id<identifier>,

5 Person owner,

6 double balance

7 }

8
9 structure Person {

10 string firstname,

11 string lastname,

12 date birthday

13 }

14 }

Service Model
1// Model file: Banking.services
2import datatypes from "Banking.data" as Domain

3functional microservice org.example.BankingService {

4interface AccountManagement {

5---

6API endpoint for creating a new account

7@required account The new account

8---

9createAccount(

10sync in account : Domain::Banking.Account,

11sync out accountId : long
12);

13}

14}

• By intent, no integrated modeling concepts for technologies (e.g., JDL2) and patterns
(e.g., MicroDSL [12] or MiSAR [1])⇒ Keep language core concise, foster learnability

2https://www.jhipster.tech/jdl
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Introduction

• LEMMA Model Examples

Domain Model
1 // Model file: Banking.data
2 context Banking {

3 structure Account<entity> {

4 long id<identifier>,

5 Person owner,

6 double balance

7 }

8
9 structure Person {

10 string firstname,

11 string lastname,

12 date birthday

13 }

14 }

Service Model (with technology metadata)
1// Model file: Banking.services
2import datatypes from "Banking.data" as Domain

3import technology from "Spring.technology" as spring

4@technology(spring)

5functional microservice org.example.BankingService {

6interface AccountManagement {

7---

8API endpoint for creating a new account

9@required account The new account

10---

11@endpoints(spring::_protocols.rest: "/accounts";)

12@spring::_aspects.PostMapping

13createAccount(

14sync in account : Domain::Banking.Account,

15sync out accountId : long
16);

17}

18}
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Introduction

• What is LEMMA usable for?

• Code generation [7]
• Semi-automatic transformation of tactical Domain-driven Design models into

executable microservices [2, 6]
• Reconstruction and model-based quality analysis of microservice architectures [5]
 Now: Support integration of architecture patterns, e.g., Event Sourcing or CQRS [8],

in models without having to adapt LEMMA’s modeling languages
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Extending LEMMA with Architecture Pattern Support

• Extending LEMMA with Architecture Pattern Support

x Flexible, need-based pattern ad-
dition/usage

Goals

r Construct a pattern-specific tech-
nology model

Solution Steps

x Check pattern compliance at de-
sign time

x Interactive fixing of pattern com-
pliance violations during model con-
struction

r Implement a pattern-specific
model validator with LEMMA’s
model processing framework. The
framework integrates with the Lan-
guage Server Protocol (LSP)3.

3https://microsoft.github.io/language-server-protocol
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Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern [8]
• Event Producer concept:

1. Event producers are microservice operations that create and send domain events
2. The sending of domain events happens asynchronously

Event Producers in LEMMA
Event Producers need to be modeled as microservice operations with an
asynchronous result parameter
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Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Construct technology model

1 // Model file name: EventSourcing.technology
2 technology EventSourcing {

3 service aspects {

4 aspect Producer for operations;
5 }

6 }

Listing 1: LEMMA technology model for the Event Sourcing pattern.

Event Producers may be modeled as mi-
croservice operations (structural constraint)
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Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Apply technology model

1 // Model file name: Banking.services
2 import datatypes from "Banking.data" as Domain

3 import technology from "EventSourcing.technology" as EventSourcing

4
5 @technology(EventSourcing)

6 functional microservice org.example.BankingService {

7 @EventSourcing::_aspects.Producer

8 sendAccountCreatedEvent(

9 async out event : Banking.AccountCreatedEvent

10 );

11 }

Listing 2: LEMMA technology model for the Event Sourcing pattern.
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Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)
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Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator

1 // Kotlin file: ServiceModelSourceValidator.kt in EventSourcingValidator.jar
2 @SourceModelValidator

3 class ServiceModelSourceValidator : AbstractXtextSourceModelValidator() {

4 @Check

5 private fun checkProducer(operation: Operation) {

6 if (operation.hasAspect("EventSourcing.Producer") && !operation.hasAsynchronousResultParameter())

7 error("The Producer aspect may only be applied to operations with a result parameter",

8 ServicePackage.Literals.OPERATION__NAME)

9 }

10 }

Listing 3: Constraint validation within the Event Sourcing Validator (Kotlin).

Event Producers must have at least one asyn-
chronous result parameter (semantic constraint)

Florian Rademacher Extending Microservice Modeling Languages with Architecture Pattern Support 12



Extending LEMMA with Architecture Pattern Support

• Example from the Event Sourcing pattern: Implement model validator
• LEMMA Live Validation: Connect with IDE via LSP and display markers for source

model validation errors

Figure 1: Pattern constraint violation displayed at design time in Eclipse
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Future Work

• Future Work
• Lower complexity of pattern integration process

 Employ Object Constraint Language (OCL) [4] to specify semantic pattern constraints
 Generate LEMMA model validators from OCL models

• Capture additional patterns for use with LEMMA, e.g., Saga and API Composition [8]
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