
Towards Autonomic
Microservices

Claudio Guidi

italianaSoftware s.r.l.

Microservice Conference 2020
Bologna, 8-10 September 2020

Claudio Guidi

Founder and CEO of
italianaSoftware.

The mission of the company
is digitalizing business
processes increasing their
flexibility and resilence
through the usage of
microservices based
distributed systems.

About me

Co-creator and co-
leader of the Jolie
programming language
project.

Jolie is a service oriented
programming language which
allows for natively
programming services.

Member of the Council of
the Microservices-Community.

The Microservices Community
is a European-based
international community
interested in the software
paradigm of Microservices.

http://italianasoftware.comhttp://jolie-lang.org http://microservices.community

Outline

• Introduction
Autonomic computing and microservices

• Presentation of a PoC
I implemented a jolie based simple demo which shows how an autonomic
microservice could be implemented

• An architectural proposition
Autonomic microservices can be built on top of an autonomic enhanced
architecture. Here I show an initial proposition for it.

• Conclusions

Introduction

Autonomic Computing

Kephart, Jeffrey & Chess, D.M.. (2003). The Vision Of Autonomic Computing. Computer.
36. 41- 50. 10.1109/MC.2003.1160055

Systems manage themselves according to an administrator’s goals.

Systems manage themselves according to an administrator’s goals. New components integrate as
effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but
elements of the grand challenge to create self-managing computing systems.

Concept Current Computing (2003) Autonomic computing

Self-configuration Corporate data centers have multiple vendors and
platforms. Installing, configuring, and integrating systems
is time consuming and error prone.

Automated configuration of components and systems follows high-
level policies. Rest of system adjusts automatically and seamlessly.

Self-optimization Systems have hundreds of manually set, nonlinear tuning
parameters, and their number increases with each release.

Components and systems continually seek opportunities to improve
their own performance and efficiency.

Self-healing Problem determination in large, complex systems can take
a team of programmers weeks.

System automatically detects, diagnoses, and repairs
localized software and hardware problems

Self-protection Detection of and recovery from attacks and cascading
failures is manual.

System automatically defends against malicious attacks or cascading
failures. It uses early warning to anticipate and prevent systemwide
failures.

The management of a running system
The key point

sys admin Execution Environment

deploy

metrics

update

Start/Stop

alarm

The management of a running system can be seen as a continuous
set of interactions between the sys admin and the target
infrastructure in order to keep the applications running with a high
level of quality targeting the business requirements.

analytics

Change
configuration

Change
configuration

The autonomic scenario
A lot of interactions between admin and the execution environment are automatically managed
by the system itself

sys admin Execution Environment

deploy

metrics

Change
configuration

update

Start/Stop

alarm

Ideally, an autonomic system is able to self-configure, self-heal, self-
protect and self-organize itself depending on its status.

The main target is reducing human interactions in order to reducing
time cost and increasing efficiency.

Change
configuration

analytics

Autonomic computing and
containerization
The execution environment can be seen as the composition of a specialized
container management infrastructure and the actual containers.

sys admin Container Infrastructure
(e.g. docker+kubernetes)

Containerization enables component
abstraction to containers and changes the
rules on how a system is managed today. A
system is just a set of interacting containers.

Sys admins can automatize a lot of operations
by configuring the orchestration platform.

Containerization is massifying the
development of distributed applications.
The development of an application must be
easy and agnostic with respect the target
infrastructure.

Containers

Execution environment

This is the working layer for
managing a system of containers

Autoscaling
It is an autonomic feature

sys admin Container Infrastructure.

deploy

metrics

Change configuration
(autoscale)

The autoscaling is maybe the first autonomic
feature a containerization system can
provide. As an example, Kubernetes is able
to autoscale a system depending on some
metrics extracted from single components.

Containers are just components that cannot
play any actions for changing their own
structure. They are manipulated by the
infrastructure.

Containers

deploy

deploy

Start/Stop/Remove

Execution environment

configure

Execution environment

Preparing an autoscaling application
The final application configuration strictly depend on the target infrastructure

sys admin Container Infrastructure.

deploy

metrics

Change configuration
(autoscale)

Containers

deploy

deploy

Start/Stop/Remove

Execution environment

configure

developer

Prepare image and
scaling requirements.

If we decide to scale following
implementation specific metrics, application
metrics must be prepared in order to be
compatible with the target infrastructure
autoscaling feature

Preparing an autoscaling application
The final application configuration strictly depend on the target infrastructure

sys admin Container Infrastructure.

deploy

metrics

Change configuration
(autoscale)

Containers

deploy

deploy

Start/Stop/Remove

Execution environment

configure

developer

Prepare image and
scaling requirements

Thanks to containerization, development is
agnostic w.r.t. the microservice technology,
but the deployment is coupled to the target
infrastructure if we want to enable an
autonomic feature like autoscaling.

Autonomic microservices
The main idea is to have a transparent infrastructure by enabling final microservices to change
themselves

Container standardized
Infrastructure.

Change
configuration
(autoscale)

Containers

deploy

Deploy/Start/Stop/Remove

Execution environment

developer

Prepare and deploy image

All the activities are performed at developing
time. Developers can rely upon a
standardized infrastructure which enables
the possibility to self-reconfigure
microservices applications.

Deploy/Start/Stop/Remove

Presentation of
a PoC

The PoC
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The main idea is to deploy a monolithic microservice which is able to request to scale one of its
components in order to scale depending on some internal metrics.

Execution
Environment

Sample
Microservice

Test client

It is deployed as a monolith (a unique executable
artifact). It is able to change its own structure
autonomously.

https://github.com/klag/autonomic-microservices

The PoC: the main picture
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The client sends a bulk of requests to the sample microservice. When the microservice detects an
increasing delay time in its responses, start an interaction with the Execution Environment in order to scale
one of its internal components.

Execution
Environment

Sample
Microservice

Test client

1

Fake requests

https://github.com/klag/autonomic-microservices

The PoC: the main picture
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The client sends a bulk of requests to the sample microservice. When the microservice detects an
increasing delay time in its responses, start an interaction with the Execution Environment in order to scale
one of its internal components.

Execution
Environment

Sample
Microservice

Test client

1

2

Fake requests

Detecting metrics and enabling
autoscaling behaviour when needed

https://github.com/klag/autonomic-microservices

The PoC: the main picture
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The client sends a bulk of requests to the sample microservice. When the microservice detects an
increasing delay time in its responses, start an interaction with the Execution Environment in order to scale
one of its internal components.

Execution
Environment

Sample
Microservice

Test client

1

2

3

Fake requests

Detecting metrics and enabling
autoscaling behaviour when needed

Service
definition

https://github.com/klag/autonomic-microservices

The PoC: the main picture
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The client sends a bulk of requests to the sample microservice. When the microservice detects an
increasing delay time in its responses, start an interaction with the Execution Environment in order to scale
one of its internal components.

Execution
Environment

Sample
Microservice

Test client

1

2

3

Fake requests

Detecting metrics and enabling
autoscaling behaviour when needed

Service
definition

It creates
container
image if
necessary

4

https://github.com/klag/autonomic-microservices

The PoC: the main picture
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The client sends a bulk of requests to the sample microservice. When the microservice detects an
increasing delay time in its responses, start an interaction with the Execution Environment in order to scale
one of its internal components.

Execution
Environment

Sample
Microservice

Test client

1

2

3

5

5

Fake requests

Detecting metrics and enabling
autoscaling behaviour when needed

Service
definition

It creates
container
image if
necessary

4

Pointers to the
created container

Creation of a new
container

https://github.com/klag/autonomic-microservices

The PoC: the main picture
A proof of concept demo developed with jolie

The code of the PoC is available at https://github.com/klag/autonomic-microservices

The client sends a bulk of requests to the sample microservice. When the microservice detects an
increasing delay time in its responses, start an interaction with the Execution Environment in order to scale
one of its internal components.

Execution
Environment

Sample
Microservice

Test client

1

2

3

5

5

Fake requests

Detecting metrics and enabling
autoscaling behaviour when needed

Service
definition

It creates
container
image if
necessary

4

Pointers to the
created container

Creation of a new
container

6
Interaction
with the new
resource

https://github.com/klag/autonomic-microservices

Jolie background
I exploited some specific features of the Jolie programming language

EmbeddingService Orientation Thinking in services
Jolie crystallises the programming concepts
of service-oriented computing as linguistic
constructs. The basic building blocks of
software are not objects or functions, but
rather services that can be relocated and
replicated as needed. A composition of
services is a service.
https://www.jolie-lang.org/

Deploying as a monolith
Jolie services can embed other jolie services. A
system of services can be deployed as a monolith
within a unique executable artifact.

A service can be packed within an archive file whose
extension is .jap

https://jolielang.gitbook.io/docs/language-tools-
and-standard-library/architectural-
composition/embeddingArchitectural primitives

In Jolie a service can play the role of aggregator,
merging the inputPorts of other services into its
own ones.

A courier is a process which is run into an
aggregator before forwarding an incoming message
to an aggregated service.

https://jolielang.gitbook.io/docs/language-tools-
and-standard-library/architectural-
composition/aggregation

Jocker
Aggregation and Couriers

Docker

Orchestrating Docker
Jocker is an experimental project made in Jolie which
offers a Jolie wrapper to Docker API. Jocker is a
container itself, and It allows to orchestrate a docker
server by using Jolie calls.

https://jolielang.gitbook.io/docs/language-tools-
and-standard-library/containerization/docker/jocker

The PoC: the architecture
I exploited some specific features of the Jolie programming language

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

Available API:
• Up: it create a container
• Down: it removes a container

createImage,
createContainer,
startContainer,
stopContainer
removeContainer

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

It plays the role of a proxy which
forwards the call to the right
subservce

Scaling the reader
The reader can be auto scaled when the responding time exceeds a limit

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!

I simulated a response time which
exceeds the allowed limit. Thus a
new resource must be asked to
the executing environment

Scaling the reader
A definition of the reader is sent to the execution environment

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!

The definition of the reader is sent
to the execution environment. If
the image does not exist, the
service requests for the creation
of the image, then create and
starts the container

Scaling the reader
A new docker container for the reader is requested.

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!

The execution environment
creates the container in docker
and returns its bindings to the
microservice

Bindings

Scaling the reader
A new container for the reader is created.

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!
Bindings

The new container is now
available

Scaling the reader
The service starts to balance the calls also to the new readers

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!
Bindings

The microservice can now balance
the calls exploiting the new
reader.

Scaling the reader
The load returns to normal

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!
Bindings

The load now returns to normal
values. The new resource is not
necessary anymore.

Scaling the reader
The service asks for reducing the resources

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!

The load now returns to normal
values. The new resource is not
necessary anymore.

Scaling the reader
The new container is removed

Execution
Environment

Test client

Jocker

Docker

Developed in Jolie

writerData:
JSON file

reader

Jolie monolith

Autonomic
manager

!!

The load now returns to normal
values. The new resource is not
necessary anymore.

An architectural
proposition

A first proposition for a standardized
architecture

Important points
The standardization of an architecture for autonomic microservices is very challenging. There are
several open points to be taken into account.

• Resource registry and meta information: which meta information must be collected at
system level and what can be managed by the single services?

• Standardization of the API and protocols: all the API and the interaction protocols must
be standardized

• Security: which are all the security aspects that must be taken into account? Are there
new aspects to be considered?

• Component visibility: a new component created by an autonomic microservice could be
private or public. Component visibility should be correctly modelled.

• …

Conclusions

Conclusions
Triggerring a discussion within the microservices community

Autonomic microservices are very challenging. This talk aims at
introducing the topic within the community in order to analyze its
aspects.

Objectives of this talk:
• Triggerring a discussion about microservices and autonomic

computing within the microservices community

• Hopefully, starting a stable discussion group within the community
about this topic which involves both people from the academy and
industry

Thanks

