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Abstract

Modern Cloud autoscaling techniques scale microservice replicas to adapt to their in-
bound traffic. We recently theorised and evaluated a scaling technique called architecture-
level, global scaling, able to scale the whole architecture w.r.t. an expected amount of
traffic. Among its benefits, global scaling helps to prevent “domino” effects (cascading
slowdowns) due to the unstructured scaling actions of microservice-level scaling.

The current notion of global scaling assumes a reactive behaviour w.r.t. traffic fluctu-
ations, where the latter trigger the application of the related scaling plans.

Here, we challenge this reactive interpretation, and we propose a proactive extension of
global scaling able to increase the efficiency of global scaling, by further lowering latency
and message loss due to the runtime overhead of allocating virtual machines and replicas.
Our contributions include the proposal of a platform for proactive global autoscaling and
a preliminary benchmarking of the efficiency gain of proactive vs reactive global scaling.

1 Introduction

Modern Cloud architectures use microservices as their highly modular and scalable components,
which, in turn, enable effective practices such as continuous deployment [8] and autoscaling [11].

Although a powerful resource, autoscaling comes with its own challenges. As Ghandi et
al. [6] put it:

[. . . ] while cloud computing offers flexible resource allocation, it is up to the cus-
tomer (application owner) to leverage the flexible platform. That is, the user must
decide when and how to scale the application deployment to meet the changing
workload demand.

The common way to perform application autoscaling [11] focusses on the single component
(e.g., a microservice) and applies an “horizontal” scaling, where the platform deploys new
copies of the same component to withstand an increase of inbound requests to the component—
and, vice versa, it shuts down redundant copies of the same microservice when idle, to save
resources/money.

In a stand of work started in 2019 [3, 4, 2] we proposed the concept of architecture-level
global scaling as an alternative to the application of the standard, localised (intended at the
level of single component/microservice in an architecture) scaling. The motivation behind
our proposal comes from the fact that localised scaling suffers from “domino” effects due to
unstructured scaling actions that may cause cascading slowdowns or outages [7, 12]. Note that
when discussing about scaling, we refer—except where otherwise specified—to the automatic
trigger of the scaling strategy and we omit the prefix ‘auto’, without losing in specificity.

In global scaling, the user provides a specification of the scaling constraints of each compo-
nent of a given architecture, both in terms of necessary resources (such as CPU and Memory)
and of its dependencies on other microservices (e.g., microservice M1 needs two copies of the
microservice M2 to run properly). Then, given one such specification, and using dedicated
resolution engines [3], we can compute deployment plans that:
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• scale the whole architecture w.r.t. a considered, expected amount of inbound traffic;

• respect (if any) the constraints of resource allocation and dependency of the scaled mi-
croservices (e.g., to run 2 copies of M1 we will have 2 pairs—4 in total—of M2);

• optimise the plan towards some set goals, e.g., minimising the cost of running the scaled
architecture, i.e., using the minimal amount of virtual machines that supports the execu-
tion of the scaled architecture.

Ideally, given a specification that accurately defines the constraints of resource allocation
and dependency of the scaled microservices, the global approach would scale the system in
similar ways as the local one minus the delays deriving from the domino effect.

2 From a Reactive to Proactive Global Scaling platform

While global scaling mitigates some problems of localised scaling, they both undergo ineffi-
ciencies due to their reactive nature. Indeed, both modalities trigger scaling as a reaction
to fluctuations of inbound traffic. Unfortunately, in the always-available, responsive world of
Cloud applications, the time spent in reacting to change goes to the detriment of customers,
who can endure delays, downtimes, and transitory outages and receive a lower-than-expected
level of service.

Researchers realised this problem early on [14], also due to how susceptible is local scaling
to domino effects, and proposed ways to mix the reactive nature of local scaling with proactive
elements, e.g., by forecasting the incoming workload [13].

Intuitively, also global scaling shall endure some performance inefficiencies due to its reaction
overhead, which one could mitigate by switching to a proactive paradigm.

In this section, we provide two contributions. The first regards the presentation of a platform
that DevOps exploit to perform proactive global scaling. In doing so, we do not start from
scratch, and we build on previous work on global scaling, proposing a minimal modification able
to capture proactive scaling and reusing most elements of the existing reactive global scaling
platform from [3, 4, 2]. The second regards the empirical benchmarking of the inefficiencies of
reactive global scaling w.r.t. an Oracle—i.e., an ideal omniscient predictor—that can proactively
trigger the global scaling of the architecture to face future traffic.

We start from the description of the platform, whose elements we represent in Fig. 1 with
continuous-line borders and mark with a dotted border the new element, Proactive Module,
that supports the application of proactive scaling behaviours (we stripe the background of the
Monitor component because we also slightly extend its behaviour in the new, proactive version
of the platform, discussed when we describe the Proactive Module).

For completeness, we briefly describe all elements of the platform, although dedicating more
space to the component for proaction.

In Fig. 1, we find two kinds of elements. The components found in the “cloud” are the
elements of a given microservices architecture, labelled G,M1,M2,M3, which we want to scale.
The elements outside the cloud belong to the global scaling platform. In the following, we
concentrate on the latter and use the architecture components in examples.

In the figure, we also show three kinds of flows. The one represented by continuous-line
arrows → showing the traffic addressed to the microservice architecture. The one indicated by
the dashed-line arrows 99K regards the runtime execution of global scaling. The thick arrow
⇐ shows the compilation time of deployment plans.
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Figure 1: Representation of the Proactive Global Scaling platform.

We comment the components in Fig. 1 in anticlockwise order, leaving the new, proactive
one for last.

Deployment Orchestration Engine The Deployment Orchestration Engine is an orthogonal
component to the platform. The only requirement is that it should provide a programming
interface for the application of deployment plans. Docker and Kubernetes are candidates for
this role.

Deployer The Deployer—which implements the Maximum Computational Load (MCL) scal-
ing algorithm and the deployment strategy proposed in [2]—regards two flows.

The first one, represented by ⇐ , regards the computation of the deployment plans, applied
by the scaling flow 99K . As such, this process is asynchronous w.r.t. both the scaling and the
traffic flow→ . In⇐ , the Deployer takes the specifications given by the user (DevOps in Fig. 1)
and computes the deployment plans that respect the Resources needed by each microservice (e.g.,
M1 needs 1 CPU and 1 Memory), the Dependencies among the microservices (e.g., microservice
M1 needs two copies of M2 to work), and the Deployment constraints of different scaling targets—
from now on, called deltas.

As previously mentioned, the second flow is that of the runtime scaling 99K , run alongside
the inbound traffic→ . In this case, the Deployer acts as service that other components can call
to trigger the application of a target, computed delta. Upon activation, the Deployer interacts
with the Deployment Orchestration Engine to perform the scaling.

Monitor The last component of the original platform for reactive global scaling is the Mon-
itor, which observes the traffic reaching the deployed architecture and possibly triggers the
application of deltas.

In its original formulation, the monitor tracks the traffic flowing on the architecture within
prefixed ticks (e.g., a tick can be 10 seconds), it checks the possible occurrence of a workload
deviation, i.e., a discrepancy between the current, tracked workload and the expected one,
correspondent to the delta currently applied. When such a condition occurs, the Monitor triggers
the Deployer to apply the delta that corresponds to the current traffic size.
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Proactive Module The last component, which we add to support proactive deployment, is
the Proactive Module. The new component breaks the pre-existing, direct connection between
the Monitor and the Deployer, taking the place of the former in determining the triggering of
the Deployer.

The interesting point of our minimal change is that, in case we want to disable any proactive
behaviour of the platform, we just need to set the Proactive Module in forward mode, so that
it would pass the reactive triggers coming from the Monitor to the Deployer.

Instead, when active, the Proactive Module can act independently of the traffic, i.e., it can
choose to follow or ignore the triggering of the Monitor. In Fig. 1, we striped the background of
the Monitor to indicate that we slightly extended the behaviour of the Monitor for the proactive
version of the global scaling platform, so that, besides the triggering signals, it also provides
to the Proactive Module the information on the tracked traffic, which the latter can choose to
consider when performing its task (e.g., to estimate the inbound traffic at a given time).

2.1 Benchmarking the performance gap between Reactive and Proac-
tive Global Scaling

The benchmarking operations are carried out considering the Email Pipeline Processing System
presented in [2]. In particular, the system is composed of 12 types of microservices, each one
having its own load balancer. The latter is used to distribute requests over a set of instances
that are incremented/decremented at need.

We perform our experiments to highlight the performance gap between Reactive and Proac-
tive Global Scaling by modeling the system and scaling approaches via the ABS [1] programming
language and executing it with the Erlang Backend (ABS is not directly executable, but it is
compiled into Erlang). We take the system modeling done in [2] and we extend it with the
Proactive Module described before: in the Reactive scaling approach the proactive power of
such a module is set to 0, while in the Proactive one it acts as an oracle. Besides the adding of
the Proactive Module, we also modify the way in which the system Monitor keeps track of the
inbound workload for scaling operations: in [2] they take the average of messages arrived in a
tick, while here we take the maximum. For example, let’s consider a tick set to 10 seconds,
we divide the tick in X samples, we keep track of the number of inbound messages arrived for
each sample and finally we consider the maximum value of them for computing scaling oper-
ations. Our approach turns out to be more conservative and less sensitive to irregular inboud
workloads. We decide to run our experiments using a part of an IMAPS email traffic similar
to that in [10] (accounting for the fact that here email attachments are also considered). We
implement such inbound workloads by means of an email generating service.

In our experiments, we focus on: (i) latency, (ii) message loss, (iii) costs and (iv) deployed
instances. Since by construction our Oracle never loses any message and the amount of cost
and deployed instances is the same but simply shifted by 1 tick, the most interesting aspect
deployment orchestration, scale configuration, global adaptation latency, thus here we only show
the latency comparison results. We consider the latency as the average time for completely
processing an email that enters the system. As can be seen from Figure 2, the Oracle is almost
perfect but it does not have 0 latency (for example see t12 − t14) as one might expect. This is
caused by the fact that our Oracle is not capable of foreseeing the email structure, e.g. it does
not know the actual number of attachments, and this may cause a small overloading of some
services. Moreover, the Oracle can anticipate of 1 tick the scaling operations, but it does not
take into account the amount of time that a virtual machine needs to be ready to work, i.e. the
startup time, causing a small delay in the adaptation.
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To give an intuition of the the performance gap between the Reactive global scaling and the
Oracle, we compute the area under their latencies (AUC) by using the composite trapezoidal
rule. The results we get, AUCglobal = 31s and AUCoracle = 0.4s, indicate that the limitations
of our Oracle are negligible. Moreover, such AUCs suggest that a generic proactive global
scaling approach can bring a significant improvement of the performances.

2.2 Discussion & Conclusion

We present a comparison between a Reactive global Scaling and an ideal (Oracle) Proactive
Scaling approach. As shown by our empirical results the Oracle outclass the reactive approach
thanks to its (almost) perfect proactiveness. However, implementing an Oracle like the one used
here in real world scenarios is, obviously, not feasible. Nevertheless, the significant gap between
the Reactive and Proactive paradigm performances suggests that even if we do not have a
perfect Proactive Module for workload prediction we can still obtain significant improvements.

Concretely, the proactive module can be implemented in different ways; for instance, we
see the usage of AI-based solutions for workload prediction promising [9, 15]. On one side, we
would like to further our research to empirically evaluate the difference between local and global
scaling (both reactive and proactive), possibly using open source microservice benchmarks [5].
Of course, since real-world implementations of the proactive module can fail to predict the
actual traffic shape, another direction for future work is the integration between the reactive
and proactive approaches —for example, by monitoring how close the prediction is of the current
workload and set thresholds to switch the control from the proactive to the reactive mode.

Figure 2: Latency(ms) Comparison.
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