
Applying QoS in FaaS applications: a Software Product

Line approach

Pablo Serrano-Gutierrez1, Inmaculada Ayala1,2, and Lidia Fuentes1,2

1 Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, España

pserrano@lcc.uma.es
2 ITIS Software, Universidad de Málaga, España

{ayala,lff}@lcc.uma.es

Abstract

A FaaS system offers numerous advantages for the developer of microservices-based
systems since they do not have to worry about the infrastructure that supports them or
scaling and maintenance tasks. However, it is not easy to apply quality of service (QoS)
policies in these kind of applications. The high number of functions that an application can
have and its various implementations introduce a high variability that requires a mecha-
nism to decide which functions are more appropriate to achieve specific goals. We propose
a Software Product Line based approach that uses feature models that model the appli-
cation’s tasks and operations, considering the family of services derived from the multiple
functions that can perform a specific procedure. Through an optimization process, the
system obtains an optimal configuration that it will use to direct service requests to the
most appropriate functions to meet certain QoS requirements.

1 Introduction

Functions as a service (FaaS) are a type of service based on cloud computing, which allows the
development of systems based on functions that are managed by the platform itself, freeing the
developer from the tasks of scaling and maintenance. In a FaaS approach, Software systems
are developed using a set of independent functions that perform the tasks required by the
application. These are serverless [2] functions that may behave as microservices or nano-services,
but with the advantage of being fully managed.

Another great advantage of FaaS applications is the possibility of choosing different func-
tions to perform the same task or operation without having to modify the application. These
functions can be implemented by independent teams or based on different algorithms. Thus,
deciding which available function is more suitable is essential because function performance
at runtime can differ depending on the operational context. It is necessary to consider both
functional and non-functional requirements since different implementations of a function may
be decisive in the result of the execution of the application. Therefore, function selection is an
essential concern in FaaS applications.

Although many frameworks are available to implement FaaS systems, they do not provide
mechanisms to apply quality of service (QoS) policies beyond controlling certain function-level
aspects, such as scaling. So it is the developer who must decide which functions are optimal to
achieve the results required by the application and how to compose them. This task is arduous
and not readily adaptable to changes in QoS requirements. We use cost and response time in
this work, but we can apply this approach to other QoS parameters such as security or energy
consumption.

Software Product Lines [8] is an approach for software development that focuses on the
development of a family of software systems using reusable assets. To define the common



Applying QoS in FaaS applications: a Software Product Line approach P. Serrano-Gutierrez et al.

and variable elements of these families of software systems, a widely used approach is Feature
Models [7]. A feature model contains an explicit representation of the configuration space
using features. A feature model organizes features into a tree and includes the corresponding
tree and cross-tree constraints representing dependencies among features. In addition, it can
consist of information about what features are optional or mandatory in a final system. A
valid configuration is a particularization of the feature model that complies with the imposed
constraints.

In this work, we will use feature models to model the composition of the tasks of a FaaS
application. Our feature models include the alternative functions to perform the operations
that made a task and their constraints. Using these models with the Z3 solver, we will obtain
valid and optimal configurations of our FaaS application, taking into account QoS policies.

The main objectives of this work are:

1. Manage FaaS application QoS at runtime. At any time, the application could make a
request to the system to adjust the QoS parameters pursued.

2. Generate the optimal configurations dynamically or, at least, those that meet restric-
tions. The system recalculates the configurations every time there is a change in the QoS
objectives.

3. Decouple the serverless implementation from a specific serverless framework. The system
is not integrated into any framework but communicates with it through REST requests.
This type of interaction makes it possible to use our proposal with most existing frame-
works. At the same time, this system does not require any extra learning from the
developer, who can continue working similarly.

This paper is structured as follows: Section 2 introduces our approach; Section 3 presents
our case study on Reservation systems; Section 4 discuses some related work and Section 5
presents some conclusions to the paper.

2 Our Approach

Our solution consists of a system (see Figure 1) that, based on FaaS, allows to choose at runtime
the best functions that perform the operations needed by the application to offer a specific QoS.
The proposal is based on the Software Product Line approach, using feature models to specify
the variants of a particular service or task of a workflow. Our system performs this task as
transparent as possible to the developer. So, there is no need to worry about knowing the
different implementations of the functions and their characteristics.

Based on a feature model of the application, the proposed system calculates the optimal
configuration of the tasks and functions that it is more convenient to execute to meet specific
QoS. This optimization is carried out using the Z3 solver, which uses the model and the charac-
teristics of each available function to carry out the different tasks necessary for the application.

The application workflow is made up of a series of tasks that are modeled in a feature model.
At the same time, each task is performed through a certain number of operations necessary to
complete it. These operations are the ones that we will execute through FaaS functions in our
system. There may be different implementations of the functions that carry out each of these
operations. Each function has specific associated characteristics, such as execution times, costs,
security, etc. The system considers these characteristics for each task to generate a services
feature model representing the family of functions associated with it. The application feature

2



Applying QoS in FaaS applications: a Software Product Line approach P. Serrano-Gutierrez et al.

Figure 1: Proposed FaaS QoS system

model, along with the functions feature models of the tasks, results in a model that defines
the valid functions configurations for the application. In this model, an optimization process
can be carried out considering a set of restrictions related to the QoS to be achieved. Through
this process, a valid configuration is obtained, whenever possible, that adjusts to the referred
feature models, and that will be the one that allows the desired QoS to be achieved.

As part of our approach, a repository contains the list of functions that the application
can use to perform the operations performed in a task. Each time a new implementation is
made for one of these functions, it is only required to add the corresponding information to the
repository. Then, this information is automatically integrated into the generated models.

A traditional FaaS application makes function calls through a framework used to imple-
ment FaaS. These frameworks use an element called API Gateway, through which they receive
requests, sending them to the corresponding functions, which are placed in containers located
somewhere in the cloud. The system delivers the execution results to the calling application
through this same Gateway. Of course, these systems consist of other elements, such as an or-
chestrator, which is responsible for deploying and maintaining the containers. Communication
with the API Gateway is often done through REST requests, which is why it has also been
chosen as the communication mechanism for our system so that it is as similar as possible to
working directly with the FaaS framework. The difference is we work with tasks and operations
instead of specific functions. So, suppose we want to perform an operation that compress an
image. In that case, we will use a generic name such as Compress instead of calling a function
that performs the compression using a specific algorithm. Our system will be the one that
makes the appropriate call to the FaaS framework so that a compressing function implemented
through a particular algorithm is executed.

3 Illustrating case study

As a case study, we propose an application to make travel bookings. Our case study considers
that a booking is made of three different elements. Firstly, the hotel reservation, which will
be regarded as mandatory for all travel bookings, and, on the other hand, the transporta-
tion reservations (that are optional), which may be flight or train reservations. If there is a
transportation reservation, the application could choose either of the two to complete the trip
reservation. Therefore, In BMPN 2.0 notation, the workflow of the application (see Figure 1),
which represents its functional requirements, will have two gateways. A first gateway indicates

3



Applying QoS in FaaS applications: a Software Product Line approach P. Serrano-Gutierrez et al.

Figure 2: Feature model and configuration generation

that the booking application can perform hotel and transport reservation tasks in parallel. A
second gateway shows the two possible alternatives in the transport branch, as shown in Figure
1. The correspondence of this workflow with the associated feature model is trivial. Each task
is represented as a feature of the feature model. The parallel, exclusive and inclusive gateways
will be modeled as feature relationships of type AND, XOR, and OR, respectively. Thus, AND
will represent feature groups with two or more obligatory children, XOR will encompass feature
groups with exclusive alternative children, and OR will be feature groups with alternative chil-
dren. As we can see, the system is easily adaptable to the characteristics of the application. For
example, if we decide to consider an alternative to the hotel for the accommodation, such as an
apartment. Then, it would be enough to modify the model indicating that Hotel Book is not
mandatory but optional and integrate it in an XOR branch together with the new Apartment
Book task.

Each of these three tasks mentioned is performed by carrying out a series of operations,
as can be seen in the task diagrams in Figure 1. In the case of hotel reservations, the best
available price for a room is obtained, and, subsequently, the reservation is made. Likewise,
Train Book and Flight Book must carry out a series of operations to complete the train and
flight reservation, respectively. Each of these operations is performed by a FaaS function that
corresponds with a function listed in the repository. As can be seen, there are alternative func-

4



Applying QoS in FaaS applications: a Software Product Line approach P. Serrano-Gutierrez et al.

tions to perform each operation, and they are labeled with cost and execution time values. For
example, in the case of the Booking operation, we find three alternatives, BookingA, BookingB
and BookingC, in which option BookingB is the fastest but at the same time has the highest
cost. However, BookingA is slower but has the lowest cost. We can model additional restric-
tions, for example, BookingC implies TicketPurchaseA, which means that if the reservation is
made with the BookingC function, it is necessary to purchase the train ticket with the function
TicketPurchaseA. In a real case, it can correspond to the condition of making two payments
using the same banking service to obtain lower surcharges.

With the workflow and the information about the available tasks and functions, we model
the feature model that appears in the central box of Figure 1. This feature model represents all
the variability introduced by the tasks and the different implementations of the functions. This
feature model is the main input of an optimization process that finds the best configuration
of the FaaS application meeting restrictions related to the QoS. In the example, the aim is
to minimize the response time but at the same time restrict the cost, imposing that it must
be less than 10. It is necessary to consider that the response time will correspond to that of
the slowest branch of the tree, while the cost refers to the set of all tasks performed. The Z3
solver works with the feature model and the restrictions mentioned above to obtain a valid
configuration of functions that achieves the desired QoS. In this case, we get a combination of
hotel and train reservations. We can see how the BookingB option has not been chosen despite
being the fastest. In this case, it is because the cost of the system would then exceed ten units
in our example.

Using this calculated configuration, our system is ready to receive requests from the appli-
cation and to process them according to it. Thus, when it gets a FindRoom request, it will
proceed to call the FindRoomA function through a request to the FaaS framework and return
its result to the application.

4 Related Work

There are only a few works that consider QoS parameters in FaaS environments. Some of them
focus on the performance of individual functions due to the performance of the framework
itself [6]. Other articles, such as [5], consider the global performance of the application but,
in this case, working at the FaaS platform level, controlling the location of resources. Also
noteworthy is [9], in which Sheshadri K et al. present a system that allows specifying a QoS for
a FaaS application and that has a QoS aware resource manager that intervenes in deployment
decisions. It also works on resource requirements, trying to use them efficiently. Our system
uses a complementary approach to these, working on the composition of application functions,
so that any of these efficient resource allocation methods could be applied together.

On the other hand, numerous works can be found that use Software Product Lines to
model the variability of services. In [10], the authors use feature models to recalculate service
composition after a failure. Also, M. Abu-Matar et al. [1] model the variability of web services
using Software Product Lines.

Likewise, numerous articles deal with the selection of services considering QoS. One of them
is [3], which shows how to compose web services considering different quality attributes. In the
area of microservices, [4] uses a model of the service workflow to select microservices utilizing an
algorithm based on list scheduling. Nevertheless, unlike our proposal, they do not use a Software
Product Line approach that models the variability due to multiple function implementations.

5



Applying QoS in FaaS applications: a Software Product Line approach P. Serrano-Gutierrez et al.

5 Conclusions

The system presented in this article allows applying QoS parameters to a FaaS application
based on feature models that model the variability of systems with multiple implementations
of functions that can be chosen to perform a certain operation. Our proposal selects the best
available functions that allow achieving a QoS fulfilling a set of restrictions imposed by the
user. This allows developers to make generic function requests, avoiding the need to know each
of the implementations and their performance at the time of coding. Thanks to the use of a
function repository, we can introduce new implementations of a certain function at runtime. It is
also possible to change QoS requirements on-the-fly, automatically generating a new selection
of functions. We plan to use this system to perform self-adaptive tasks based on changing
conditions, as the infrastructure on which functions are deployed can also have a significant
effect on QoS.

Acknowledgements

This work is supported by the European Union’s H2020 research and innovation programme un-
der grant agreement DAEMON 101017109, by the projects co-financed by FEDER funds LEIA
UMA18-FEDERJA-15, MEDEA RTI2018-099213-B-I00 and Rhea P18-FR-1081, the PRE2019-
087496 grant from the Ministerio de Ciencia e Innovación and by the project DISCO B1-2012 12
funded by Universidad de Málaga.

References

[1] Mohammad Abu-Matar and Hassan Gomaa. Variability modeling for service oriented product line
architectures. In 2011 15th International Software Product Line Conference, pages 110–119, 2011.

[2] Sarah Allen, Chris Aniszczyk, Chad Arimura, et al. Cncf serverless whitepaper, 2018.

[3] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering, 33(6):369–384, 2007.

[4] Zhijun Ding, Sheng Wang, and Meiqin Pan. Qos-constrained service selection for networked
microservices. IEEE Access, 8:39285–39299, 2020.

[5] MohammadReza HoseinyFarahabady, Young Choon Lee, Albert Y. Zomaya, and Zahir Tari. A qos-
aware resource allocation controller for function as a service (faas) platform. In Michael Maximilien,
Antonio Vallecillo, Jianmin Wang, and Marc Oriol, editors, Service-Oriented Computing, pages
241–255, Cham, 2017. Springer International Publishing.

[6] Anisha Kumari, B. Sahoo, Ranjan Kumar Behera, Sanjay Misra, and Mayank Mohan Sharma.
Evaluation of integrated frameworks for optimizing qos in serverless computing. In ICCSA, 2021.

[7] Kwanwoo Lee, Kyo Kang, and Jaejoon Lee. Concepts and guidelines of feature modeling for
product line software engineering. pages 62–77, 04 2002.

[8] Klaus Pohl, Günter Böckle, and Frank Linden. Software Product Line Engineering: Foundations,
Principles, and Techniques. 01 2005.

[9] Sheshadri K R and J Lakshmi. Qos aware faas platform. In 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 812–819, 2021.

[10] Jules White, Harrison Strowd, and Douglas Schmidt. Creating self-healing service compositions
with feature models and microrebooting. Int. J. Business Process Integration and Management
Int. J. Business Process Integration and Management, 1:0–0, 01 2009.

6


	Introduction
	Our Approach
	Illustrating case study
	Related Work
	Conclusions

