
Explainable Root Cause Analysis

for Failing Microservices

Jacopo Soldani, Stefano Forti, and Antonio Brogi

University of Pisa, Pisa, Italy, {name.surname}@unipi.it

Abstract

Determining the root causes of observed failures is a main issue in microservice-based
applications. Unfortunately, available root cause analysis techniques do not focus on ex-
plaining how root failures actually caused the observed failure. On the other hand, the
availability of such explanations would greatly help to pick adequate countermeasures,
e.g., by introducing circuit breakers or bulkheads. We hence present a declarative root
cause analysis technique, which can determine the cascading failures that possibly caused
an observed failure, identifying also (or starting from) a root cause. We also introduce
a prototype implementation of our technique, and briefly comment on how we used it to
assess our technique by means of controlled experiments.

1 Introduction

Microservices gained momentum in enterprise IT, with Netflix and Spotify already being de-
livered as microservice-based applications, for instance [14]. Microservice-based applications
are considered cloud-native, since they are composed by loosely coupled services, which can be
independently deployed and scaled to fully exploit the potentials of cloud computing [4].

Microservice-based applications are often composed by hundreds of services, which are repli-
cated by instantiating multiple instances of each service. Multiple instances of the various ser-
vices in an application interact to respond to end users’ requests, possibly resulting in thousands
of interactions happening at the same time. Service instances can fail, e.g., by returning error
responses to their invokers, or not answering at all since they suddenly crashed.

Understanding the possible root causes for a failing service instance is inherently complex.
Did it fail on its own? Did it instead fail in cascade, since it interacted with another failing
service instance? Did the latter fail on its own or in cascade to some other service instance?
Answering such questions is not easy, when possibly thousands of interactions among different
service instances happen at the same time [14]. At the same time, answering the above questions
is crucial to enact countermeasures and avoid the same failure cascade to happen again [10].

catalogueDb users usersDb

carts cartsDb

paymentordersDb queueMaster

shippingorders
frontend

edgeRouter

rabbitMq

catalogue

Motivating Scenario. Consider Sock
Shop [15], whose microservice-based ar-
chitecture is displayed on the right
(where darker nodes and dashed arrows
highlight the portion considered in this
motivating scenario). Suppose that we deployed two replicated instances of each microservice
in Sock Shop, and that an instance of carts fails, e.g., by starting to return error responses
to its clients because of an internal error. Suppose also that frontend’s instances can tolerate
the failure of carts’ instances, e.g., by caching carts. Suppose instead that orders’ instances
fail when carts replies with error responses, becoming unable to process the requests from
frontend’s instances. When this happens, we have cascading failures in frontend as well, due
to which Sock Shop’s end users cannot place orders.



Explainable Root Cause Analysis for Failing Microservices J. Soldani et al.

For Sock Shop to get back fully working, application operators must identify the internal
failure of an instance of carts as the root cause of the failures in frontend’s instances, as well as
that such root causing failure propagated to frontend through orders. This would enable first
recovering the failing instance of carts, e.g., by restarting it, which would then result in the
instances of orders and frontend getting back fully working as well. Also, by identifying the
failure cascades that made frontend’s instances unable to place orders, application operators
could operate only on such cascades to avoid this to happen again. For instance, they could
introduce a circuit breaker enabling orders to tolerate the failure of carts’ instances, whilst
not intervening on frontend, which can already tolerate the failure of carts.

Existing root cause analysis techniques can help determining the service instances that may
have failed first [12]. This is typically done by correlating the performance of the different
service instances or the events they log, so as to determine the set of possible root causes.
Identified root causes are also sometimes ranked by returning first those having higher chances
to have caused the observed failure. However, there is no explanation of how root causing
failures propagated to other service instances, up to causing the failure observed on a service
instance. Explanations —given as the possible failure cascades originating from an identified
root causing failure— would enable intervening not only on the service that first failed, but also
on those that failed in cascade [10]. They would enable, e.g., to equip intermediate services with
circuit breakers enhancing the failure resilience of their instances [8], or to introduce bulkheads
limiting failure propagations to only certain parts of an application [7].

Our Contribution. We propose an explainable root cause analysis technique, which auto-
matically determines both the possible root causes for a failure observed on a service instance,
and the failure cascades due to which the root causing failure possibly propagated up to that
observed. It can also be used by restricting the possible root causes to a given set, hence
enabling to explain the possible root causes identified with other existing techniques. In both
cases, the explainable root cause analysis starts from the distributed logs of an application’s
service instances. Such logs are processed by means of declarative rules, which enable eliciting
the interactions occurring among service instances, and determining whether a service instance
failed on its own or in cascade, e.g., because it interacted with another failing service instance.

We also introduce a prototype implementation of our technique, and we briefly comment on
its use in controlled experiments. The experiments’ results show that our technique effectively
determined the true root causes/explanations in 99.74% of the considered cases.

2 Related Work

Our survey [10] reviews existing techniques for automatically identifying the possible root causes
of failures in microservice-based applications. Such techniques are classified based on the gran-
ularity of analysed failures, by distinguishing techniques analysing application-level failures
from those analysing service-level failures. Application-level techniques, such as, e.g., [1, 3, 5],
enable determining the possible root causes of failures observed on the frontend of an ap-
plication. Service-level techniques, such as the one we propose and, e.g., [6, 13, 16], instead
enable determining the possible root causes of failures observed on any service in an application.
Service-level techiques hence enable analysing failures at a finer granularity [10].

The main difference between existing service-level techniques and the one we propose resides
in explainability. Existing techniques can effectively determine the possible root causes for a
service failure, often also ranking them based on the probability for an identified root cause
to have caused the observed failure. This is done by correlating the performances or events

2



Explainable Root Cause Analysis for Failing Microservices J. Soldani et al.

happening on the services forming an application. For instance, [13] directly correlates metrics
monitored on application services, whilst [6] and [16] exploit such correlation to drive a random
walk on a graph representing the architecture of an application or causal relationships between
the service therein. Similar approaches are adopted by other existing techniques, always result-
ing in the lack of explanations of how identified root causing failures propagated and caused
that observed [10]. The latter is precisely the aim of our work, which can determine the possible
root causes for observed failures or start from those identified with existing techniques, while
providing explanations of how root causing failures propagated and caused the observed ones.

In this perspective, the technique in our previous work [11] is closer to the one in this paper,
given that it explains how root causing failures propagated to cause an observed failure. Such
technique however relies on a specification of the application architecture and of the failure
behaviour of each of the service therein, which is used to drive the analysis of application logs.
The technique in this paper hence differs from that in our previous work [11], given that we
directly process the application logs, without requiring any specification of the application.

In summary, to the best of our knowledge, the service-level technique in this paper is the
first enacting root cause analysis by also identifying the cascades due to which the root causing
failures propagated and caused that observed. It is the first doing it without requiring any other
inputs than the logs produced by the services forming an application. At the same time, our
technique can complement the results obtained with other existing techniques, by explaining
how the root causing failures they identify propagated and caused that observed.

3 Explainable Root Cause Analysis

Logs & Interactions. Our technique works on a simple representation of application logs
modelled as Prolog facts of the form log(SName, SInstance, Timestamp, Event, Message, Severity),
where the name SName and the instance identifier SInstance of a logging service are followed by
the log Timestamp, the type of the logged Event, the associated log Message (if any), and its
Severity (expressed according to the Syslog standard [2]).

Our methodology currently handles the following types of events: (i) internal, which de-
notes logs related to the internal business logic of the considered service, (ii) sendTo(DstService,

SessionId), which denotes that a request was sent to an instance of DstService with an as-
sociated SessionId, (iii) received(SessionId), which denotes reception of a message at a par-
ticular instance of the destination service within the interaction identified by SessionId, (iv)
timeout(DstService, SessionId), which denotes that the interaction started towards DstService,
identified by SessionId, incurred in a timeout, and (v) errorFrom(DstService, SessionId), which
denotes that the the destination service replied with an error code within the interaction iden-
tified by SessionId.

Based on this simple modelling and on a fistful of declarative Prolog rules,1 our technique
can identify: (a) successfully completed interactions between services, (b) service requests that
incurred in a timeout event and were not received, and (c) interactions that failed either due
to a logged error or to an expired timeout.

Explanations. Our technique recursively builds explanations for logs associated to a failure,
so as to determine their root cause. It is worth noting that, thanks to Prolog resolution mech-
anisms, our technique permits instantiating a specific root cause service as an input parameter
so to restrict the obtained explanations only to those events that have such a service as their

1https://github.com/di-unipi-socc/yRCA/blob/main/explainer/prolog/explain.pl.

3

https://github.com/di-unipi-socc/yRCA/blob/main/explainer/prolog/explain.pl


Explainable Root Cause Analysis for Failing Microservices J. Soldani et al.

failure cascade root cause. If, conversely, no root cause is specified, our technique determines all
explanations for all possible root causes. This enables using our technique both as an explainer
in pipeline to other existing tools for root cause identification as well as a stand-alone tool.

By recurring on logged events, our technique can explain 8 cases – 5 recursive and 3 base
cases – corresponding to different possible cascading and root failures, respectively. For each
case, we briefly summarise it offering graphical sketches to epitomise recursive cases.

I J

E

ϟ

1. Internal error of invoked service instance. Our technique ex-
plains that a failure or timeout event E at service I, happening at
the end of a failed or timed-out interaction with service J, may
have been caused by an internal failure (i.e., a logged event whose
severity is at least warning) at service J. In this case, our technique
recurs on the internal error of J to explain it.

2. Failed interaction of invoked service instance. Our technique
explains that a failure or timeout event E at service I, has been
caused by a failure event F at service J, which – in turn – has been
caused by a failed interaction of J with service K. In this case, after
identifying the failure cascade K → J → I, our technique recurs on
the log of F to explain it.

I J K

ϟ

E

F

I J K
3. Timed-out interaction of invoked service instance. Our tech-
nique explains that a timeout event at service I has been caused
by a timeout at service J, which – in turn – has been caused by a
timeout related to an interaction of J with service K. In this case,
after identifying the timeout cascade K → J → I, our technique
recurs on the timeout at J to explain it.

4. Unreachability of a service called by invoked service instance.
Our technique explains that a failure or timeout event E at service
I has been caused by a timeout at service J, which – in turn – has
been caused by a failed interaction of J. Differently from cases 2
and 3, our technique here considers the possibility of the request
sent by J to have never been received by the target service K, then
causing the interaction to fail because of a timeout. In this case,
after identifying the failure cascade K → J → I, our technique
recurs on the log of the timeout at J to explain it.

I J K

X

E

I J

E

X

5. Unreachability of invoked service instance. Our technique ex-
plains that a timeout event at service I has been caused by a non-
received request during an interaction of I with service J. In this
case, our technique abducts a new piece of knowledge in the expla-
nation, i.e. that J was unreachable, and recurs to explain it.

6. Internal service error. This case explains an internal failure event logged by a service,
identifying the service itself as the root cause for such an event. Recursion ends.

7. Temporary service unreachability. This case explains abducted unreachability events for
a service, identifying that such a service was temporarily unreachable because it previously
logged some information. Recursion ends.

8. Unstarted service. This last case explains abducted unreachability events for a service,
identifying that such a service never logged any information. Recursion ends, by abducting the
fact that such a service was possibly never started.

4



Explainable Root Cause Analysis for Failing Microservices J. Soldani et al.

Prototype. Our technique comes with an open source prototype, called yRCA.2 yRCA encodes
our explainable root cause analysis by means of a Prolog reasoner, which is embedded in a
Python-based command-line tool. An example of output returned by yRCA is shown hereafter,
with possible explanations for the failure mentioned in our motivating scenario (Section 1):

[0.615]: edgeRouter: Error response (code: 500) received from frontend
(request_id: [<requestId>])

-> frontend: Error response (code: 500) received from orders (request_id: [<requestId>])
-> orders: Failing to contact carts (request_id: [<requestId>]). Root cause: <exception>
-> carts: unreachable

[0.385]: edgeRouter: Error response (code: 500) received from frontend (request_id: [<requestId>])
-> frontend: Failing to contact carts (request_id: [<requestId>]). Root cause: <exception>
-> carts: unreachable

By default, yRCA groups the possible explanations based on the structure of the failure
cascade, and it ranks the different explanations based on the frequency with which they occur
in all identified failure cascades (with such frequency indicated between square brackets at the
beginning of each explanation). The idea is that the more frequent is an explanation, the higher
is the probability that it corresponds to the true explanation for an observed failure. This is
inspired by other existing analysis techniques, which rank the identified root causes by giving
higher ranks to those found with a higher rate [10].

4 Conclusions

We presented a technique for explaining cascading failures in microservice-based applications.
Our technique can determine the failure cascades that possibly caused an observed failure,
either also eliciting the possible root causes or starting from given root causes, e.g., when
another existing technique is used to identify the possible root causes for an observed failure.

Our technique comes with a prototype implementation (called yRCA), which we used to
assess it based on controlled experiments run on an existing chaos testbed. In particular, we
configured the Chaos Echo testbed [9] to obtain a reference application whose architecture
mirrors that of Sock Shop, and whose services can be configured to control their interaction
and failure behaviour. We then run the reference application by varying the configuration of its
services so as to analyze the performances of yRCA when varying four different parameters, viz.,
(a) end-user load, (b) service interaction rate, (c) failure cascade length, and (d) service failure
rate. For each case, we considered 200 generated failures, whose true root causes/explanations
were effectively identified by yRCA in 99.74% of the cases. The effectiveness of our technique
however not only comes from this, but also from the number of returned false positives, viz.,
failure cascades considered to have possibly caused the observed failure, even if this was not the
case. False positives should be kept low, as they require application operators to waste time
and resources in unnecessarily checking them [10]. We therefore measured the average number
of failure cascades identified by yRCA, one being the right solution and the other being false
positives. On average, we had at most 2 different root causes identified, for a total of at most
3 possible explanations for an observed failure. yRCA hence kept the number of false negatives
low on average, thus limiting the efforts hat should be spent by application administrators in
checking failure cascades that did not truly caused an observed failure.

Finally, it is worth noting that the failure cascades explaining an observed failure can help
application administrators in identifying where to enact suitable countermeasures (e.g., circuit
breakers and bulkheads [7]) to avoid the occurrence of those failure cascades. One natural

2https://github.com/di-unipi-socc/yRCA.

5

https://github.com/di-unipi-socc/yRCA


Explainable Root Cause Analysis for Failing Microservices J. Soldani et al.

direction for future work is the prototyping of a tool supporting the visualization of failure
cascades explaining observed failures, together with suggestions of possible countermeasures.
Another interesting future work direction is extending the scope of our explainable root cause
analysis to deal with incomplete logs, e.g., in case the logging driver fails or a service instance
gets suddenly killed without flushing all its logs.

References

[1] Aggarwal, P., et al.: Localization of operational faults in cloud applications by mining causal
dependencies in logs using golden signals. In: Service-Oriented Computing. LNCS, vol. 12632, pp.
137–149. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-76352-7 17

[2] IETF: The Syslog protocol. RFC 5424, Network Working Group (2009)

[3] Kim, M., et al.: Root cause detection in a service-oriented architecture. SIGMETRICS Perform.
Eval. Rev. 41(1), 93–104 (2013). https://doi.org/10.1145/2494232.2465753

[4] Kratzke, N., Quint, P.: Understanding cloud-native applications after 10 years of
cloud computing - a systematic mapping study. J. Syst. Soft. 126, 1–16 (2017).
https://doi.org/10.1016/j.jss.2017.01.001

[5] Liu, P., et al.: Unsupervised detection of microservice trace anomalies through service-level deep
bayesian networks. In: 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE). pp. 48–58. IEEE (2020). https://doi.org/10.1109/ISSRE5003.2020.00014

[6] Meng, Y., et al.: Localizing failure root causes in a microservice through causality inference. In:
2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). pp. 1–10. IEEE
(2020). https://doi.org/10.1109/IWQoS49365.2020.9213058

[7] Newman, S.: Building Microservices. O’Reilly Media, 2 edn. (2021)

[8] Richardson, C.: Microservices Patterns. Manning Publications, 1 edn. (2018)

[9] Soldani, J., Brogi, A.: Automated generation of configurable cloud-native chaos testbeds.
In: Dependable Computing - EDCC 2021 Workshops. pp. 101–108. Springer (2021).
https://doi.org/10.1007/978-3-030-86507-8 10

[10] Soldani, J., Brogi, A.: Anomaly detection and failure root cause analysis in (micro) service-based
cloud applications: A survey. ACM Comput. Surv. 55(3) (2022). https://doi.org/10.1145/3501297

[11] Soldani, J., et al.: What went wrong? Explaining cascading failures in microservice-based applica-
tions. In: Service-Oriented Computing. pp. 133–153. Springer (2021). https://doi.org/10.1007/978-
3-030-87568-8 9

[12] Solé, M., et al.: Survey on models and techniques for root-cause analysis. CoRR abs/1701.08546
(2017)

[13] Wang, L., et al.: Root-cause metric location for microservice systems via log anomaly detection.
In: 2020 IEEE International Conference on Web Services (ICWS). pp. 142–150. IEEE (2020).
https://doi.org/10.1109/ICWS49710.2020.00026

[14] Waseem, M., et al.: Design, monitoring, and testing of microservices systems: The practitioners’
perspective. J. Syst. Soft. 182, 111061 (2021). https://doi.org/10.1016/j.jss.2021.111061

[15] Weaveworks, Container Solutions: Sock shop. https://microservices-demo.github.io (2017)

[16] Wu, L., et al.: MicroRCA: Root cause localization of performance issues in microservices. In:
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. pp. 1–9. IEEE
(2020). https://doi.org/10.1109/NOMS47738.2020.9110353

6

https://microservices-demo.github.io

	Introduction
	Related Work
	Explainable Root Cause Analysis
	Conclusions

