
Towards Viewpoint-Based
Microservice Architecture Reconstruction

Philip Wizenty and Florian Rademacher

IDiAL Institute, University of Applied Sciences and Arts Dortmund, Germany
philip.wizenty,florian.rademacher@fh-dortmund.de

1 Introduction
Microservice Architecture (MSA) is a comparatively novel approach to the realization of service-
based software architectures [16]. It promotes to increase the independence of a service by
(i) letting it realize a distinct, self-contained capability; (ii) decreasing its coupling to other
software components w.r.t., e.g., implementation, testing, and operation; and (iii) transferring
its ownership to a dedicated team, being responsible for all aspects related to service design,
implementation, and operation [16].

The resulting microservices and their service-specific independence have the potential to
make software systems more scalable and reliable [16]. In addition, MSA is expected to greatly
benefit maintainability by facilitating the replacement of services with improved versions [6].
However, this flexibility may also lead to a proliferation of microservices and a subsequent ero-
sion of the anticipated architecture design, e.g., when teams autonomously advance different
parts of a software system [4]. Consequently, the investigation of Software Architecture Recon-
struction (SAR) [3] of existing systems is considered an important area in MSA research [6].

Therefore, we propose to present our design, implementation, and preliminary results of
an MSA-enabled SAR approach. Specifically, our approach aims to automate as much tasks
as possible to provide an efficient means to reconstruct microservice architectures. Further-
more, our approach reifies reconstruction results as architecture models which are expressed in
modeling languages dedicated to reducing the complexity in MSA engineering on the basis of
Model-driven Engineering (MDE) [5]. By contrast to related approaches [1, 11], the models
resulting from our SAR approach respect different viewpoints and concerns in MSA engineer-
ing, thereby allowing stakeholder-focused examination of knowledge gathered from SAR pro-
cesses [3]. As a result, domain experts can perform a targeted review of reconstructed domain
concepts independently of, e.g., reconstructed microservice APIs which are in the responsibility
of technology-savvy MSA stakeholders like microservice developers. The preliminary results
from applying our SAR approach on a case study show that our approach reconstructs the
microservices and their corresponding interfaces and operations. Furthermore, the data struc-
tures associated with those interfaces or data persistence functionalities are also recovered in
the process.

The remainder of the paper is organized as follows. Section 2 provides background informa-
tion about MDE, and LEMMA1 (Language Ecosystem for Modeling Microservice Architecture),
a concrete MDE approach. Section 3 describes our approach to reconstruct models from source
code using LEMMA. We validate the preliminary results of our approach in the following Sec-
tion 4 and provide them in an Github repository2. The paper concludes with a conclusion and
potential future work in Section 5.

1https://github.com/SeelabFhdo/lemma
2https://github.com/SeelabFhdo/microservices2022

https://orcid.org/0000-0002-3588-5174
https://orcid.org/0000-0003-0784-9245
https://github.com/SeelabFhdo/lemma
https://github.com/SeelabFhdo/microservices2022

Towards Viewpoint-Based Microservice Architecture Reconstruction P. Wizenty and F. Rademacher

2 Viewpoint-Based MSA Modeling with LEMMA
This section provides insight in the MDE process of MSA using LEMMA. MDE [5] is an ap-
proach to software engineering that aims to facilitate the design, implementation, and execution
of software systems through the use of models. A model in the sense of MDE is an artifact
that (i) abstracts from selected characteristics of the considered software system to benefit its
realization in a certain way; (ii) is expressed in a dedicated modeling language which prescribes
well-formedness constraints and semantics for valid models; and (ii) is (semi-) automatically
processible for specific purposes in the software engineering process.

MDE is particularly helpful in the engineering of complex software systems as it allows
the description of such systems or parts thereof from model-based viewpoints [12, 8]. Model-
based viewpoints can, for example, foster domain experts’ understanding of a software system
by gathering domain-specific information in dedicated domain models that are expressed in a
modeling language which uses familiar terms from the application domain [7].

By contrast to source code, viewpoint models are specifically effective in making the parts
and underlying concepts of complex software architectures explicit to facilitate reasoning about
them [24]. In addition, MDE provides means to systematically process models, e.g., to generate
code from them, which can significantly benefit implementation efficiency [2, 15], or analyze
them for automated quality assessment.

LEMMA is an MDE-based ecosystem that focuses on the concerns of stakeholders in MSA
engineering [20, 18]. Specifically, LEMMA aims to support stakeholders in coping with chal-
lenges inherent to MSA engineering—among them domain-driven service design [4] and, API
management [10].

To this end, LEMMA integrates four stakeholder-oriented modeling languages:

• Domain Data Modeling Language (DDML): The DDML focuses the concerns of
domain experts and microservice developers in collaborative domain modeling. For this
purpose, the language provides linguistic support for Domain-Driven Design [7] as a pop-
ular design methodology for MSA engineering [16, 14, 9].

• Technology Modeling Language (TML): The TML enables microservice develop-
ers and operators to capture information related to microservice implementation and
operation, e.g., programming languages, deployment specifications, or configurations for
orchestration platforms. Moreover, it allows aspect-based specification of metadata [18].

• Service Modeling Language (SML): Microservice developers can use the SML to
model microservice APIs and endpoints. For this purpose, service models can import
DDML-based domain models to use domain concepts as types for microservice operations
and thus determine a microservice’s domain responsibility [16]. Moreover, the SML al-
lows the import of technology models to, e.g., assign protocol information to modeled
endpoints, or configure microservice APIs as expected by frameworks like Spring3.

• Operation Modeling Language (OML): The OML defines modeling concepts for
microservice operators to express microservices’ deployment and use of operation infras-
tructure. The language provides a generic syntax which aims to be applicable in the
configuration of heterogeneous MSA operation technologies [16].

LEMMA’s modeling languages and model processing framework [10] have already been
validated in real-world use cases [19, 22, 21]. By contrast to related approaches [13, 23],

3https://www.spring.io

2

https://www.spring.io

Towards Viewpoint-Based Microservice Architecture Reconstruction P. Wizenty and F. Rademacher

LEMMA does not assume a certain technology for microservice implementation, e.g., Java [23].
LEMMAs modeling languages and their integration based on model imports support multi-
concern modeling. That is they do not focus on only a single concern in MSA engineering such
as domain modeling, or the implementation and provisioning of APIs [13, 23].

3 LEMMA-Enabled Approach for MSA Reconstruction

This section introduces a four-phased process for recovering a software system’s architecture
and our concrete approach to it utilizing LEMMA. The semi-automated reconstruction is a com-
plex and tool-dependent process [3] that generally requires a set of different tools to support the
source code artifacts of the development process, e.g., programming languages and deployment
specifications. Therefore, the reconstruction requires a set of tools to recover the software sys-
tem’s architecture. Additionally, the reconstruction environment or workbench should provide
the possibility for the integration of new tools without unnecessarily modifying existing data
[3].

The SAR reconstruction process includes four phases with specific activities and results.

1. Raw View Extraction is the first phase of the SAR process with a strong focus on obtaining
information about the software system’s architecture, mainly from source code artifacts,
deployment specifications, and service interactions [11, 3].

2. Database Construction phase consists of transforming the reconstructed architecture in-
formation into a standardized data format [3].

3. View Fusion and Manipulation phase combines the various view information stored in
the database to improve the accuracy of the reconstructed information. The manipulation
part in this phase aggregates and interprets the reconstructed combined information to
create a hypotheses on the software system’s architecture [3].

4. Architecture Analysis is the concluding phase of the SAR process and relates the analysis
of the hypothesis about the software system’s architecture from the previous stage. The
hypothesis needs to be analyzed and tested to prove its correctness. [3].

Figure 1 depicts the different components of our software reconstruction workbench for
restoring the architecture of a technology heterogeneous software system using LEMMA.

LEMMA Model
Extractortor

 Reconstruction
 Database

Reconstruction
Plugin Service

Reconstruction
Plugin Data

Operation Viewpoint
Concepts

Service Viewpoint
Concepts

Domain Viewpoint
Concepts

Reconstruction Framework creates

uses

«artifact»
Service Model

stores

uses

«artifact»
Source Code

invokes invokesimplementsimplements
«artifact»

Operation Model

«artifact»
Deployment

Specifications

3

2
1

«artifact»
Domain Model

«artifact»
Service

Dependencies
4

Figure 1: Structure of the RF and RP for the reconstruction of a software system’s architecture.

The Reconstruction Frameworks (RF) orchestrates the first three phases of the SAR pro-
cess. Therefore, the framework is responsible for the raw view extraction and the fusion and

3

Towards Viewpoint-Based Microservice Architecture Reconstruction P. Wizenty and F. Rademacher

manipulation of the reconstructed information by using the standardized data formats from
the Reconstruction Database. The first phase of the SAR restores architecture information
from e.g., Source Code and Deployment Specifications. For this purpose, the RF loads the
development artifacts and invokes the Reconstruction Plugins (RP). The RP implements
viewpoint-dependent functionalities for the technology-specific reconstruction of architecture
information. When the RF invokes the RP, they perform the raw view extraction and forward
the reconstructed architecture information to the framework.

The second phase consists of constructing the database to store the recovered information
about the software system’s architecture. Therefore, we derived a standardized data format for
each viewpoint in MSA (cf. Section 2). The data format consists of the specific concepts for
each viewpoint to store the reconstructed architecture information.

In the third phase of the SAR process, the RF performs a fusion and manipulation task
based on the raw view information recovered from the RP to increase the accuracy of the
reconstructed architecture. For this purpose, the RF transforms the raw view information into
hypotheses about the software system’s architecture and stores them into the Reconstruction
Database in the standardized viewpoint-specific data format.

The fourth and last phase of the SAR process consists of the architectural analysis of the
recovered architecture. Our approach addresses this phase in two sequential steps. To provide
the Software Architect with a readable representation of the reconstructed software architec-
ture, the LEMMA Model Extractor [17] uses the information in the Reconstruction Database
to derive LEMMA models from it. Particularly Domain Data, Service, and Operation Models
utilizing the eponymous modeling languages. In the final step of our approach, the Software
Architect analyzes the hypothesis of the software system’s architecture from the LEMMA mod-
els to prove or disprove them to provide an accurate representation of the software system’s
architecture. To ease the manual analysis of the reconstructed software architecture, LEMMA
provides a set of functionalities to support this task, e.g., static analyzers4.

4 Preliminary Results
This section contains the evaluation of the preliminary results of the reconstruction for the
Lakeside Mutual5 case study. The case study consists of five functional, three infrastructural,
and four frontend microservices. At the current point of development, the RF and RP’s support
the recovery of functional microservices using the Java and Spring technology stack. Table 1
illustrates the preliminary results for the SAR Process for the RF and RP’s using LEMMA’s
modeling languages for the Domain Data and Service viewpoint in MSA.

Table 1: Preliminary reconstruction results from the Reconstruction Framework and Plugins.
Element Expected Reconstructed Precision

Microservices 5 4 80
Interfaces 16 14 87,5
Operations 61 50 82
Parameters 161 117 72,7

The RF and RP’s support the reconstruction of four out of five microservices. The frame-

4https://github.com/SeelabFhdo/lemma/tree/main/de.fhdo.lemma.analyzer
5https://github.com/Microservice-API-Patterns/LakesideMutual

4

https://github.com/SeelabFhdo/lemma/tree/main/de.fhdo.lemma.analyzer
https://github.com/Microservice-API-Patterns/LakesideMutual

Towards Viewpoint-Based Microservice Architecture Reconstruction P. Wizenty and F. Rademacher

work was unable to recover one of the microservices because the service uses NodeJS as a
programming language, which is not supported by our approach at the moment but could be
seamlessly integrated with a RP to our reconstruction workbench. The RF recovers all inter-
faces and operations from the rest of the microservices. The reconstructed parameters refer to
the operation’s in- and outgoing data types. The discrepancy for the parameters results from
the fact that the plugins do not support the reconstruction of external dependencies, where
the source code is not present for the reconstruction, e.g., Spring dependencies. Additionally,
the FR and RP’s also recover complex data types of the parameters as data structures with
LEMMA’s domain models.

5 Conclusion and Future Work
In this contribution, we summarized our MDE-based approach for MSA reconstruction by
utilizing LEMMA as a presentation proposal to Microservices 2022. Our proposal depicts
an early stage of development, where some functionalities are not fully implemented, e.g.,
the recovery of deployment specification. Nevertheless, the preliminary results of architecture
reconstitution show promising results with a recovery rate of approximately 80 percent.

In conclusion, we introduced viewpoint-based MSA modeling with LEMMA in Section 2 to
provide the background knowledge for our approach. In the following Section 3, we describe the
reconstruction using the RF and RP’s to derive architecture information from source artifacts
and LEMMA to present the recovered information to the Software Architect. Additionally, we
evaluate our preliminary results in Section 4.

In the future, we plan to extend our reconstruction approach to increase the accuracy of the
reconstructed architecture. Therefore, we plan to integrate runtime information to derive service
interaction, include deployment specifications to address additional viewpoints in MSA, and
include infrastructural components to consider dependencies to databases or service discoveries
to prove a better representation of the overall architecture.

References
[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. Towards micro service architecture recov-

ery: an empirical study. In 2018 IEEE International Conference on Software Architecture
(ICSA), pages 47–56. IEEE, 2018.

[2] Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a large industrial
context — Motorola case study. In Model Driven Engineering Languages and Systems,
pages 476–491. Springer, 2005.

[3] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley, third edition, 2013.

[4] Justus Bogner et al. Microservices in industry: insights into technologies, characteristics,
and software quality. In 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), pages 187–195. IEEE, 2019.

[5] Benoit Combemale et al. Engineering Modeling Languages: Turning Domain Knowledge
into Tools. CRC Press, 2017.

[6] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on architecting mi-
croservices: trends, focus, and potential for industrial adoption. In 2017 IEEE Interna-
tional Conference on Software Architecture (ICSA), pages 21–30. IEEE, 2017.

5

Towards Viewpoint-Based Microservice Architecture Reconstruction P. Wizenty and F. Rademacher

[7] Eric Evans. Domain-Driven Design. Addison-Wesley, 2004.
[8] Robert France and Bernhard Rumpe. Model-driven development of complex software: a

research roadmap. In 2007 Future of Software Engineering, pages 37–54. IEEE, 2007.
[9] Martin Garriga. Towards a taxonomy of microservices architectures. In Software Engi-

neering and Formal Methods, pages 203–218, Cham. Springer, 2018.
[10] Saverio Giallorenzo et al. Model-Driven Generation of Microservice Interfaces: From

LEMMA Domain Models to Jolie APIs, 2022. arXiv: 2202.11397 [cs.SE].
[11] Giona Granchelli et al. MicroART: a software architecture recovery tool for maintaining

microservice-based systems. In 2017 IEEE International Conference on Software Archi-
tecture Workshops (ICSAW), pages 298–302. IEEE, 2017.

[12] ISO/IEC/IEEE. Systems and software engineering — Architecture description. Standard
ISO/IEC/IEEE 42010:2011(E), 2011.

[13] Stefan Kapferer and Olaf Zimmermann. Domain-driven service design. In Service-Oriented
Computing, pages 189–208. Springer, 2020.

[14] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microservices from mono-
lithic software architectures. In 2017 IEEE International Conference on Web Services
(ICWS), pages 524–531. IEEE, June 2017.

[15] Parastoo Mohagheghi and Vegard Dehlen. Where is the proof? - A review of experi-
ences from applying MDE in industry. In Model Driven Architecture – Foundations and
Applications, pages 432–443. Springer, 2008.

[16] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly, 2015.
[17] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. A modeling method for sys-

tematic architecture reconstruction of microservice-based software systems. In Enterprise,
Business-Process and Information Systems Modeling, pages 311–326. Springer, 2020.

[18] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. Aspect-oriented modeling
of technology heterogeneity in Microservice Architecture. In 2019 IEEE International
Conference on Software Architecture (ICSA), pages 21–30. IEEE, 2019.

[19] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. Deriving microservice code
from underspecified domain models using DevOps-enabled modeling languages and model
transformations. In 2020 46th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), pages 229–236. IEEE, 2020.

[20] Florian Rademacher et al. Graphical and textual model-driven microservice development.
In Microservices: Science and Engineering, pages 147–179. Springer, 2020.

[21] Florian Rademacher et al. Towards holistic modeling of microservice architectures using
LEMMA. In Companion Proceedings of the 15th European Conference on Software Archi-
tecture, pages 11–20. CEUR-WS, http://ceur-ws.org/Vol-2978/mde4sa-paper2.pdf.

[22] Jonas Sorgalla et al. Applying Model-Driven Engineering to stimulate the adoption of
DevOps processes in small and medium-sized development organizations. SN Computer
Science, 2(6):459, 2021.

[23] Branko Terzić et al. Development and evaluation of MicroBuilder: a model-driven tool
for the specification of REST microservice software architectures. Enterprise Information
Systems, 12(8-9):1034–1057, 2018. Taylor & Francis.

[24] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in Model-
Driven Engineering. IEEE Software, 31(3):79–85, May 2014. IEEE.

6

https://arxiv.org/abs/2202.11397
http://ceur-ws.org/Vol-2978/mde4sa-paper2.pdf

	Introduction
	Viewpoint-Based MSA Modeling with LEMMA
	LEMMA-Enabled Approach for MSA Reconstruction
	Preliminary Results
	Conclusion and Future Work

