
Microservice Migration: Face-Off
Decomposition and Integration Challenges

Riccardo Matteo Boggetti1,2

1 Profesia s.r.l.
2 https://www.linkedin.com/groups/12160870/

1 Introduction
Microservice architecture is the most architectural style in demand nowadays. Reasons are known

by everyone by now: thanks to the availability of technology such as Docker and Kubernetes,
microservices underlie cloud-ready solutions (to engage the porting of your application from bare
metal to cloud), they also leverage the agile development approach and, finally, they set the stage to
think about a platform business model.

Especially for the usage of cloud environments (private or public), that obviously allows
companies to ease the infrastructure management and cut-off the infrastructure costs, approaching to
microservices is prevalent but requires migration of the application landscape from monolith-style
applications, and a microservice architecture is not just a technical issue, but above all a change of
state of mind

Because of that, you have to face-off a lot of challenges when you start a
“monolith-to-microservice” initiative in your company, but the good result of your journey depends
necessarily on the success of mainly two of these challenges: the monolith decomposition and the
isolation and decoupling of your business integration processes.

Taking these applications, that are running in production since years after business approvals,
UATs and bugfixes, and dismember them on paper, taking care of preserve a yearly history of
developments and functionalities, is a huge responsibility and, if in addition of this, you have also a
migration deadline, that’s why you could have the need of some tools to guide, control and speed up
this process.

2 From Monolith to Microservices
Decomposition in a migration project is a teamwork of assessment and analysis that should

involve architects, product owners, developers…
There are several approaches to manage the decomposition1: service-per-team, business

capabilities isolation, domain-driven design.



Domain-driven design decomposition is not just a technical matter, but often entails a corporate
reorganization because of the data and process ownership. The domain-driven design is de-facto
supported by event-storming2 sessions, that should involve not just technical professionals but also
business references.

Decomposition by business capability is an approach to detect business functionalities inside the
system under analysis but is not so simple the distillation of business functionalities even more so the
monolith system is complex: you need to match the static code with the dynamicity of the business
flows.

The usage of a tool that can automatically and simultaneously manage the scan of your code (static
analysis) and detect the live transactions of the runtime applications (dynamic analysis), should ease
the task. vFunction3 is a solution that provides both capabilities for Java-based applications: with a
package of components, detects JVM transactions and makes matches with the data collected by the
static analysis of the compiled java objects of your application. After that, via a ML engine, vFunction
elaborates an assessment graph of your application splitted in isolated functionalities.

vFunction is a tool for analysis purposes, to reduce the effort and time for assessment and, more
important, for the modeling of self-consistent components, thanks to a graphical tool for the java
classes exclusivity management.

3 Business Integration Processes

The goal of a microservices architecture is the set-up of portable components, each of them
providing a specific business logic, ensuring easy maintenance for the developer and the chance to
stay focused on the quality of the code, with fewer worries about integration and infrastructure.

With vFunction you speed up the proposal of a microservices mesh.
But in the enterprise world, microservices without integration do not bring any value: the business

processes are what add value to the company, but to guarantee self-consistency and autonomy of
microservices, you must abstract your business processes and host them in an integration/decoupling
layer, manageable via APIs by leveraging the api-centric view of a cloud-native architecture.

Business integration capabilities often follow the enterprise integration patterns4 and there are
solutions that provide these capabilities for developers (do not reinvent the wheel, developing code
from scratch): depending on your needs you can choose between iPaaS solutions such as Choreo5 and
WSO2 API Manager6 for private cloud purposes.

References
1 https://microservices.io/index.html
2 https://www.eventstorming.com/
3 https://vfunction.com/
4 https://www.enterpriseintegrationpatterns.com/
5 https://wso2.com/choreo/
6 https://wso2.com/api-manager/


