
Static analysis tools in the era of cloud-native systems

Tomas Cerny and Davide Taibi

1 Computer Science, Baylor University, Waco, Texas, USA
tomas cerny@baylor.edu

2 Tampere University, Tampere, Finland, EU
davide.taibi@tuni.fi

Abstract

Microservices fuel cloud-native systems with small service sets developed and deployed
independently. The independent nature of this modular architecture also leads to challen-
ges and gaps. The intended system design might deviate far from what is eventually pro-
duced and maintained as the architecture tends to degrade over time. This paper challenges
the audience on how static analysis could contribute to microservice system development
and management, particularly managing architectural degradation. It elaborates on chal-
lenges and needed changes in the traditional code analysis to better fit these systems and
discusses implications for practitioners once robust static analysis tools become available.

1 Introduction

Microservice architectural style is a paradigm to develop systems as a suite of small, self-
contained, and autonomous services, communicating through a lightweight protocol. Each
microservice has own codebase with a separated configuration to facilitate evolution. This, as
a result, enables the separation of duty for roles like architects, developers, and DevOps.

What is, however, less perfect is the separation of concerns. Such separation is likely to be
well managed on a single codebase level, but it might get lost with the decentralization and
existence of multiple codebases.

Overlaps across microservices with their bounded contexts are inevitable as microservices
interact. Implications from these overlaps are reflected in the microservice codebase. Since
microservice codebase remains self-contained, overlaps means partially restated definitions, typ-
ically reimplemented in a particular framework version. This restatement can relate to data
definitions of processed information, encapsulated knowledge, business logic, or other enforce-
ment related to various policies (i.e., security, constraints, privacy, etc.). However, this overlap
is uncontrolled throughout the system evolution and there are fragile mechanisms to assess
consistency errors. Thus, once any of these definitions changes in the microservice codebase,
there is no direct indication of the definition being restated elsewhere in other codebases.

We typically want to separate concerns to provide better readability and maintainability.
We can do a micro-management and design solid concern separation per each microservice.
However, this would only relate to a single microservice and not the whole system. The question
to ask is whether we need to see a certain concern per the entire system perspective. Suppose
we are architects, most likely yes. Even for developers, it would be nice to see concerns aligned
across interacting microservices. However, each concern of a certain type is re-defined and
encapsulated across microservices. This might be one of the greatest disappointments when
migrating from monolith systems. As an example, the consequence for security assessment is
that each microservice has to be analyzed individually, and then extracted knowledge must be
combined ad-hoc, which is tedious, error-prone, and does not scale with agile development.

In this work, we discuss how static analysis could contribute to solve the shortcomings of
microservices-based systems. We emphasize how the future tools should adapt to better fit



Static analysis tools in the era of cloud-native systems Cerny and Taibi

these systems’ specifics. We base our discussion on a set of prototype tools that we developed
with our research teams.

In the remainder of this paper, we discuss the current approaches to assess cloud-native
systems (Section 2). Next, Section 3 focuses on changes to static analysis tools to better
align with cloud-native. Finally, Section 4 discusses the implications and impact on involved
stakeholders once these tools become robust and available, while Section 5 concludes the paper.

2 Current Trends

Researchers often point to dynamic system analysis as one possible direction to address
decentralization challenges. Dynamic analysis, typically driven by telemetry (i.e. https:

//opentelemetry.io) is often considered as the answer to the system-centric perspective, de-
rived from traces of user interaction or simulated tests. The great advantage of this approach is
its platform agnosticism. Still, many additional steps must be done for microservices to be inte-
grated and support this [3]. For instance, correlation ID must be introduced, log centralization
must be in place, and health checks must be provided for most advanced reporting. The dynamic
analysis led by telemetry can determine microservice dependencies from call-graphs [7, 22, 13], a
heat map of how often are certain endpoints reached. However, dynamic analysis does not have
access to details only available in codebases. Besides, we must consider the separation of duty
relevant to telemetry. It is not developers who manage telemetry, but DevOps which introduces
indirection, multi-step interpretation, and latency between what has been developed and what
has been found consequently from the operating system. The argumentation could be similar
to whether we should use typed-safe or interpreted languages with no type-safety. Developers
typically take advantage of quick code and workspace checks that are based on static analysis.
These are often part of their integrated development environments, build files, or added to the
CD/CI pipelines. However, these tools only relate to a single codebase. The emerging challenge
is that successful new tools have to operate across codebases and combine results with seeing
the system as a whole rather than as separated pieces of the puzzle.

When comparing static and dynamic analysis, we must understand that these have two
different targets. One can tell us what the underlying structures and the white-box view
are; the other gives us detail about how the system is used and performs and provides the
black-box system overview. Both approaches can identify entry points to the system or to
its microservices, and that is where we can see the overlap. However, it is also the boundary
of where the approach limits stand. Anything below entry points can be assessed by static
analysis, and whatever happens above is the target for dynamic analysis. However, we see
that static analysis is rather in control of developers and the dynamic analysis is more relevant
to DevOps. Still, for another stakeholder, i.e., to perform a security assessment, we might
need a combination of both. Above this, the system can also utilize a hybrid approach to
understand system insights and dynamics. Such an approach involves code instrumentation
which adds additional logging or measures into the executed code. However, this approach has
a performance impact and is often applied in profiling and performance optimization.

Mining Software Repositories (MSR) can indicate how the system structure changes over
time. We can collect additional information related to version control messages, possibly linked
to issues in ticketing systems. However, we must also assume one important thing; the static
analysis does not only consume code or code changes. The cloud-native design typically involves
build files and container configuration files in the repository, and these files can be easily
analyzed to help determine topology [9, 19, 11] and involved technology.

Still, the primary input for static analysis is the system code. It is typically parsed into an

2

https://opentelemetry.io
https://opentelemetry.io


Static analysis tools in the era of cloud-native systems Cerny and Taibi

Abstract-Syntax Tree (AST). Various tools then analyze the tree to perform defined verification
or match patterns. The AST can also be used to generate an intermediate representation (IR)
or a model in which the system information is reasoned.

3 Static Analysis for Microservices-Based systems

Conventional static analysis performs on a single codebase. It determines dependencies across
various internal structures with a central focal point. However, cloud-native systems are decen-
tralized with a self-contained codebase per microservice. This difference makes it more chal-
lenging to deliver anticipated results since each codebase could employ a different framework,
platform, or library version. Thus, we must consider static analysis per each codebase.

Multi-codebase is not the only challenge; we cannot just align the analysis results linearly
next to each other. Instead, we need to interweave them in the scope where they overlap -
across bounded contexts. If we accomplish this, we can derive a virtual holistic perspective of
the system with fine granularity of system internal dependencies.

To overcome the above challenges, we need good tactics. Since many platforms can be used,
it is unavoidable to employ multiple platform parsers. The result of all such efforts should be in
a unified IR. This will also enable IR interweaving that does not need to deal with heterogeneity.

In our research and prototyping[24, 2]1 and [12]2, we focused on microservice middleware,
on the detection communication patterns between services [16, 20, 21] and on metrics to detect
coupling based on the interaction between microservices detected with static analsyis [15].

Furthermore, we observed that most microservices would be developed using particular
platform frameworks that introduce components [5, 18]. Among examples, consider Spring or
Java Enterprise. Even if components are not employed, a good programming convention will
be established following the separation of concerns on the codebase level. With a focus on
such practice, we determined that low-level code analysis can be unnecessary. Instead, we can
focus on components like data entities, repositories, services, and controllers. In addition, the
internal call-graphs and involved high-level structures should be detected (i.e., remote-procedure
calls, REST-call, event registration, etc.). With this priority, we can use AST to detect the
structure and determine an intermediate representation from these interconnected components
augmented with methods, properties, and additional details. We have as assessed this approach
on Spring and Java Enterprise on two system benchmarks [25, 4].

In our follow-up work [18]3, we intended for generalization and proposed that the AST is
extended to be a superset across languages, which we call Language Agnostic AST (LAAST).
Using LAAST, it is fairly simple to build or customize pattern matching agents to detect com-
ponents or higher-level structures. Thus, a common set can be established for conventional
framework components. Still, the developer can customize these matchers for naming conven-
tions and apply custom callback to populate the IR with a given component. We have tested
this prototype success on the previous testbeds [25, 4] and added one in C++ [8], manually
validating precision and recall for component detection above 95% [18]. Still, more experiments
for other platforms remain.

With the IR of each microservice, we need to interweave them. The bottom-up approach is
to join involved data models. The horizontal approach is to predict possible inter-service com-
munication. This can be accomplished by detecting remote calls to certain endpoints identifying
relative paths, HTTP types, and parameters, and matching them to endpoint signatures. We

1https://cloudhubs.ecs.baylor.edu/prophet/
2MicroDepGraph https://github.com/clowee/MicroDepGraph
3https://github.com/cloudhubs/source-code-parser

3

https://cloudhubs.ecs.baylor.edu/prophet/
https://github.com/clowee/MicroDepGraph
https://github.com/cloudhubs/source-code-parser


Static analysis tools in the era of cloud-native systems Cerny and Taibi

recognize that only dynamic analysis can recognize inter-service communication with perfect
precision, but if we solely consider static analysis, this results with the best approximation.
However, other interactions based on events and brokers can be taken into account as well.

To interweave microservices, first, we identify overlap with data entities. Using LAAST
matching agents we identify entities. We analyze these entities to derive a data model per
each bounded context. Next, we use similarity from natural-language processing, Wu-Palmer
algorithm [10] to determine potential matches in entities across microservice IRs. Placing iden-
tified entities in an overlay helps us connect IRs together and build a context map. However,
other techniques can be used. Next, we consider possible remote calls between microservices.
Similarly, we operate on LAAST to identify endpoints, relative paths, HTTP types and pa-
rameters, and similarly remote calls within services, which we match based on HTTP types,
relative paths, and parameters. We can determine additional dependencies across microservices
that strengthen the previously assembled overlay with this route. Performing this across all
microservices we determine the holistic system IR, which corresponds to the latest state of the
system. We have tested this interweaving on the previously mentioned testbeds [25, 4, 8] and
assessed the results manually, with few associations missing in the resulting context map and
few unidentified connections in the inter-service interaction [2]. The missing connections were
all due to ambiguity caused by choosing from multiple potential URLs at endpoints which we
did not design to our prototype, expecting each endpoint to match a single URL. In preliminary
work, we also detect event interaction through message brokers, typical for cloud-native systems.

4 Discussion on Implications

Using our prototype tools, we managed to assess benefits, limitations, and implications from
static analysis over cloud-native system with broader detail.

The primary motivation behind the static analysis is automated reasoning and reports. With
the ability to operate across the holistic system or across multiple microservices, developers (as
opposed to DevOps) gain new aid to understanding the impact of their changes. For instance,
if we track interconnection that disappears with an update, something might be wrong with
the update. This would greatly help conformance/consistency checking, which is currently very
fragile due to horizontal separation of duty where distinct development teams manage different
microservice codebases. However, specific strategies to do so remain to be addressed.

It becomes easier to assess whether the system complies with various organizational policies
with holistic system IR. Analysts might need to assess the codebase to determine compliance.
Similarly to consistency checking, certain policies could be assessed. One venue for discussion
and research is the consistency of business logic. Analyzing business logic is difficult from
code, even though we know that service components are to be encapsulated and we can track
control and data flows. This opens the question of consistency checking across microservices
which is certainly attractive. This, however, has to take into account rules added by method
interception. Frameworks like Drools can greatly reduce management efforts for business rules;
however, these again apply to a single codebase. An integration with configuration server in
cloud-native methodology could open a path for centralizing rules.

Another important avenue for research is the centralization of concerns that are now scat-
tered in the decentralized codebases of microservices. For instance, motivation to access the
context map or canonical data model, or to have a single focal point for security assessment,
understand all business constraints applied in the system. All these perspectives are needed to
make wise design decisions, and all these are very difficult to gain from cloud-native systems.

Despite the above details, we need visual representation to properly articulate the concerns,

4



Static analysis tools in the era of cloud-native systems Cerny and Taibi

Figure 1: Our AR prototype for SAR and communication simulation.

point out the consistency, and sketch the system architectural perspective. A lot of work
has been done in this context, recognizing that architecture can be described through various
views [14]. The process is known as Software Architecture Reconstruction (SAR) [17] can indeed
be accomplished through static analysis [24]. Many researchers address this for microservices
either through manual code and documentation assessment [17] or through dynamic analysis,
which provides only a subset of what is necessary. SAR fits well to the process we described,
with the reasoning being recognized as one outcome and visual representation as another.

We have researched SAR in cloud-native and used reasoning to detect access policy con-
sistency errors [6] or to detect bad smells [23]. We have also researched visualization of mi-
croservices [2] with work in progress on three-dimensional rendering using augmented reality as
sketches in Figure 1 for one of the systems testbeds.

A large set of challenges was identified by practitioners in a large study on microservice
evolvability [1]. Missing system-centric perspectives, inter-service dependencies, coordination
between decentralized teams, and challenges with outdated documentation, were the most fre-
quently mentioned issues. They also mention challenges related to microservice integration,
API breaking changes, etc. We strongly believe all these could be leveraged by introducing
robust static analysis tools for cloud-native systems.

This article does not anticipate that static analysis is superior to dynamic analysis. It is
simply meant for different goals and challenges, and clearly, a broad research opportunity exists
for combined static and dynamic analysis.

5 Conclusion

In this article, we discuss static analysis in the context of cloud-native design. While static
analysis is recognized for many benefits, it has not been widely adopted and used for challenges
faced in cloud-native systems. We have listed major obstacles preventing static analysis from
operating on the holistic system and point to our experiments that attempted to interweave
intermediate representations of microservices to enable such operation. We believe the scien-
tific and industrial community should put more effort into developing robust tools that can
help developers better face system evolution and maintenance tasks. In future work, we plan
to continue our research in this direction of combining decentralized systems. We will also con-
tinue to develop prototypes across languages demonstrating the ability to assess heterogeneous
systems to provide a single focal point when assessing certain information and concerns.

5



Static analysis tools in the era of cloud-native systems Cerny and Taibi

6 Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant
No. 1854049, a grant from Red Hat Research https://research.redhat.com, and the
ADOMS Grant from Ulla Tuominen Foundation.

References

[1] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. Industry practices and challenges for the
evolvability assurance of microservices. Empirical Software Engineering, 26(5):104, 2021.

[2] V. Bushong, D. Das, and T. Cerny. Reconstructing the holistic architecture of microservice systems
using static analysis. In Int. Conf. on Cloud Computing and Services Science (CLOSER), 2022.

[3] John Carnell and Illary Huaylupo Sánchez. Spring microservices in action. Manning Publications
Co., 2nd ed. Shelter Island, NY, USA, 2021.

[4] Tomas Cerny. Microservice Testbed for Texas Teacher Examination, 2020.
https://github.com/cloudhubs/tms2020, last accessed 1/2/2022.

[5] Tomas Cerny, Jan Svacina, Dipta Das, Vincent Bushong, Miroslav Bures, Pavel Tisnovsky, Karel
Frajtak, Dongwan Shin, and Jun Huang. On code analysis opportunities and challenges for enter-
prise systems and microservices. IEEE Access, 8:159449–159470, 2020.

[6] D. Das, A. Walker, V. Bushong, J. Svacina, T. Cerny, and V. Matyas. On automated rbac
assessment by constructing a centralized perspective for microservice mesh. PeerJ Computer
Science, 7:e376, 2021.

[7] Silvia Esparrachiari, Tanya Reilly, and Ashleigh Rentz. Tracking and controlling microservice
dependencies. Queue, 16(4):10:44–10:65, August 2018.

[8] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,
B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang, L. Zaru-
vinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou. An open-source benchmark
suite for microservices and their hardware-software implications for cloud & edge systems. In Int.
Conf. on Architectural Support for Programming Languages and Operating Systems, 2019.

[9] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and A. D. Salle. Towards
recovering the software architecture of microservice-based systems. In 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), pages 46–53, 2017.

[10] L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and J. Weese. UMBC EBIQUITY-CORE: Semantic
textual similarity systems. In Conf. on Lexical and Computational Semantics, 2013.

[11] A. Ibrahim, S. Bozhinoski, and A. Pretschner. Attack graph generation for microservice architec-
ture. In Symposium on Applied Computing, 2019.

[12] Mohammad Rahman Imranur, Sebastiano Panichella, and Davide Taibi. A curated dataset of
microservices-based systems. In Joint Proceedings of the Summer School on Software Maintenance
and Evolution. CEUR-WS, 09 2019.

[13] S. Ma, C. Fan, Y. Chuang, W. Lee, S. Lee, and N. Hsueh. Using service dependency graph to
analyze and test microservices. In 42nd Annual Computer Software and Applications Conf., 2018.

[14] Liam O’Brien, Christoph Stoermer, and Chris Verhoef. Software architecture reconstruction:
Practice needs and current approaches. Technical report, Carnegie Mellon University, 01 2002.

[15] Sebastiano Panichella, Mohammad Rahman Imranur, and Davide Taibi. Structural coupling for
microservices. In 11th International Conference on Cloud Computing and Services Science, 04
2021.

[16] Ilaria Pigazzini, Francesca Arcelli Fontana, Valentina Lenarduzzi, and Davide Taibi. Towards
microservice smells detection. In Proceedings of the 3rd International Conference on Technical
Debt, TechDebt ’20, page 92–97, New York, NY, USA, 2020.

6

https://research.redhat.com


Static analysis tools in the era of cloud-native systems Cerny and Taibi

[17] F. Rademacher, S. Sachweh, and A. Zündorf. A modeling method for systematic architecture
reconstruction of microservice-based software systems. In Enterprise, Business-Process and Infor-
mation Systems Modeling. Springer International Publishing, 2020.

[18] Micah Schiewe, Jacob Curtis, Vincent Bushong, and Tomas Cerny. Advancing static code analysis
with language-agnostic component identification. IEEE Access, 10:30743–30761, 2022.

[19] J. Soldani, G. Muntoni, D. Neri, and A. Brogi. The ntosca toolchain: Mining, analyzing, and
refactoring microservice-based architectures. Sw. Practice and Experience, 51(7):1591–1621, 2021.

[20] Davide Taibi and Kari Systä. From monolithic systems to microservices: A decomposition frame-
work based on process mining. In Proceedings of the 9th International Conference on Cloud
Computing and Services Science - Volume 1: CLOSER,, pages 153–164. INSTICC, SciTePress,
2019.

[21] Davide Taibi and Kari Systä. A decomposition and metric-based evaluation framework for mi-
croservices. In Cloud Computing and Services Science, pages 133–149, Cham, 2020. Springer
International Publishing.

[22] J Thalheim, A Rodrigues, I.E. Akkus, P Bhatotia, Rm Chen, B. Viswanath, L. Jiao, and C. Fetzer.
Sieve: Actionable insights from monitored metrics in distributed systems. In Middleware, 2017.

[23] A. Walker, D. Das, and T. Cerny. Automated code-smell detection in microservices through static
analysis: A case study. Applied Sciences, 10(21), 2020.

[24] A. Walker, I. Laird, and T. Cerny. On automatic software architecture reconstruction of microser-
vice applications. Information Science and Applications, 2021.

[25] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao. Benchmarking microservice systems
for software engineering research. In 40th Int. Conf.Software Engineering: Comp., 2018.

7


	Introduction
	Current Trends
	Static Analysis for Microservices-Based systems
	Discussion on Implications
	Conclusion
	Acknowledgments

