LEMMA2Jolie:
Model-Driven Generation of Microservice Interfaces

Saverio Giallorenzo! ",

2

Fabrizio Montesi?", Marco Peressotti?, and Florian Rademacher?

! Universita di Bologna and INRIA saverio.giallorenzo@gmail.com
2 University of Southern Denmark {fmontesi,peressotti}@imada.sdu.dk
3 University of Applied Sciences and Arts Dortmund florian.rademacher@fh-dortmund.de

1 Introduction

Microservice Architecture (MSA) is one of the current leading patterns in distributed software
architectures [14]. While widely adopted, MSA comes with specific challenges on architecture
design, development, and operation [4, 20]. To cope with this complexity, researchers in software
engineering and programming languages started proposing linguistic approaches to MSA: language
frameworks that ease the design and development of microservice architectures with high-level
constructs that make microservice concerns in the two different stages syntactically manifest.

Regarding development, Ballerina and Jolie are examples of programming languages [15, 13]
with new linguistic abstractions for effectively programming the configuration and coordination of
microservices. Concerning design, Model-Driven Engineering (MDE) [2] has gained relevance as a
method for the specification of service architectures [1], crystallised in MDE-for-MSA frameworks
such as MicroBuilder, MDSL, LEMMA, and JHipster [22, 11, 18, 10]. Guidi and Maschio [9]
recently reported how Jolie’s abstractions offer a productivity boost in industry. LEMMA provides
linguistic support for the application of concepts from Domain-Driven Design (DDD) [5, 18], and
has been validated in real-world use cases [21, 19].

In a recent paper [8], we observed that the metamodels of LEMMA’s modelling languages and
the Jolie programming language have enough contact points to consider their integration.

One of the practical aims of such an integration is to provide a toolchain that supports the trans-
ition from MDE-based MSA models, e.g., expressed in LEMMA, to compliant implementations
in languages with dedicated support for microservices, like Jolie.

A fundamental piece of said toolchain, which we propose to present at Microservices 2022, is a
tool, called LEMMA2Jolie!, able to convert LEMMA domain models into Jolie APIs. To illustrate
how LEMMA2Jolie works, we introduce the core concepts of LEMMA’s Domain Data Modelling
Language (DDML) in Section 2 and the Jolie AP layer in Section 3, followed by the formal encoding
in Section 4 which LEMMAZ2Jolie implements to generate Jolie APIs from a DDML model. Notably,
the encoding enables the systematic translation of LEMMA domain models—which, following
DDD principles, capture domain-specific types (including operation signatures)—into Jolie APIs.

2 LEMMA Domain Modelling Concepts

LEMMA’s DDML enables domain experts and microservice developers to capture domain-specific
types of microservices in domain models [18]. Figure 1 shows the core rules of the DDML grammar?.

1Source code available at https://github.com/frademacher/lemma2jolie.
2The complete grammar can be found at https://github.com/SeelabFhdo/lemma/blob/main/de.fhdo.lemma.
data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext.

https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245
https://github.com/frademacher/lemma2jolie
https://github.com/SeelabFhdo/lemma/blob/main/de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://github.com/SeelabFhdo/lemma/blob/main/de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext

LEMMAZ2Jolie: Model-Driven Generation of Microservice Interfaces S. Giallorenzo et al.

CTX == contextid {CT}
CT w= STR|COL|ENM
STR = structure id [(STRF)] {FLD OPS}
STRF := aggregate | domainEvent | entity | factory
| service | repository | specification | valueObject
FLD = idid [(FLDF)]|Sid [(FLDF)]
FLDF := identifier | part
OPS == procedure id [(OPSF)] (FLD) | function (id | S) id [(OPSF)] (FLD)
OPSF := closure |identifier | sideEffectFree | validator
COL := collectionid {(S |id)}
ENM := enumid {id}
S = int | string | unspecified | ...

Figure 1: Simplified grammar of LEMMA’s DDML.

The DDML follows DDD to model domain concepts. DDD’s Bounded Context pattern [5]
is crucial in MSA design as it makes the boundaries of coherent domain concepts explicit, thereby
defining their scope and applicability [14]. A LEMMA domain model defines named bounded
contexts (rule CTX in Figure 1). A context may specify domain concepts in the form of complex
types (CT), which are either structures (ST R), collections (COL), or enumerations (ENM).

A structure gathers a set of data fields (F'LD). The type of a data field is either a complex
type from the same bounded context (id) or a built-in primitive type, e.g., int or string (S). The
unspecified keyword enables continuous domain exploration according to DDD [5]. That is, it
supports the construction of underspecified models and their subsequent refinement as one gains
new domain knowledge [17]. Next to fields, structures can comprise operation signatures (OP.S)
to reify domain-specific behaviour. An operation is either a procedure without a return type,
or a function with a complex or primitive return type.

LEMMA’s DDML supports the assignment of DDD patterns, called features, to structured
domain concepts and their components. For instance, the entity feature (rule ST RF in Figure 1)
expresses that a structure comprises a notion of domain-specific identity. The identifier feature
then marks the data fields (FLDF') or operations (OPSF) of an entity which determine its
identity. For a detailed presentation of the considered DDD features we refer to [7].

The DDML also enables the modelling of collections (rule COL in Figure 1), as sequences
of primitives (S) or complex (id) values, and enumerations (EN M), as sets of predefined literals.

The LEMMA listing in Figure 2 shows an example of a LEMMA DDML model [19]. The
model defines the bounded context BookingManagement and its structured domain concept
ParkingSpaceBooking. 1t is a DDD entity whose bookingID field holds the identifier of an entity
instance. The entity also clusters the field pricelnFEuro to store the price of a parking space booking,
and the function signature priceInDollars for currency conversion of a booking’s price.

The greyed-out terms in Figure 1 are LEMMA DDML features we do not consider in this
work and leave for future extensions.

LEMMAZ2Jolie: Model-Driven Generation of Microservice Interfaces

S. Giallorenzo et al.

context BookingManagement {

structure ParkingSpaceBooking(entity) {
long bookingID(identifier),
double priceInEuro,

///@beginCtz(BookingManagement)

///@entity
type ParkingSpaceBooking {

/// @identifier
bookingID: long

pricelnEuro: double

function double priceInDollars i}nterface ParkingSpaceBooking interface {
RequestResponse:
priceInDollars (ParkingSpaceBooking)(double)
} }
} LEMMA|| ///@endCiz Jolie

Figure 2: An example LEMMA Domain Model (taken from [19]) and its encoding as Jolie API.

3 Jolie Types and Interfaces

Jolie interfaces and types define the functionalities of a microservice and the data types associated
with those functionalities i.e., the API of a microservice. Figure 3 shows a simplified grammar of
Jolie APIs, taken from [13] and updated to Jolie 1.10 (the latest major release at the time of writing).

1 = interface id {RequestResponse id(TP,)(TFP.)}
TP = id|B
TD = typeid: T

2= B [{id C: T} | undefined
= [[[min,maz]]] | = | ?
m= int[(R)] | string[(R)] | void | ...
range([[[min,mazx]]]) | length([[[min,maz]]]) | enum(...) | ...

Figure 3: Simplified syntax of Jolie APIs (types and interfaces)

An interface is a collection of named operations (RequestResponse), where the sender deliv-
ers its message of type T'P; and waits for the receiver to reply with a response of type T' P,—although
Jolie also supports OneWays, where the sender delivers its message to the receiver, without waiting
for the latter to process it (fire-and-forget), we omit them here because they are not used in the en-
coding (cf. Section4). Operations have types describing the shape of the data structures they can ex-
change, which can either define custom, named types (id) or basic ones (B) (integers, strings, etc.).

Jolie type definitions (T'D) have a tree-shaped structure. At their root, we find a basic type
(B)—which can include a refinement (R) to express constraints that further restrict the possible
inhabitants of the type [6]. The possible branches of a type are a set of nodes, where each node
associates a name (id) with an array with a range length (C') and a type T'.

Jolie data types and interfaces are technology agnostic: they model Data Transfer Objects
(DTOs) built on native types generally available in most architectures [3].

Based on the grammar in Figure 3, the Jolie listing in Figure 2 (on the right) shows the
equivalent of the example LEMMA domain model (on the left) and works as a preview example of
the logic behind our encoding, presented in Section 4. Structured LEMMA domain concepts like

3

LEMMAZ2Jolie: Model-Driven Generation of Microservice Interfaces S. Giallorenzo et al.

ParkingSpaceBooking and their data fields, e.g., bookingID, are directly translatable to correspond-
ing Jolie types. To map LEMMA DDD information to Jolie, we use Jolie documentation comments
(///) together with an @-sign. It is followed by (i) the string beginCtx and the parenthesised
name of a modelled bounded context, e.g., BookingManagement; (ii) the DDD feature name,
e.g., entity; or (iii) the string endCtz to conclude a bounded context. This approach enables to
preserve semantic DDD information for which Jolie currently does not support native language
constructs. The comments serve as documentation to the programmer who will implement the
API. In the future, we plan on leveraging these special comments also in automatic tools. LEMMA
operation signatures are expressible as RequestResponse operations within a Jolie interface
for the LEMMA domain concept that defines the signatures. For example, we mapped the domain
concept ParkingSpaceBooking and its operation signature pricelnDollars to the Jolie interface
ParkingSpaceBooking _interface with the operation priceInDollars.

4 Encoding LEMMA Domain Models as Jolie APIs

In the following, we report an encoding from LEMMA domain models to Jolie APIs that formalises
and extends the mapping exemplified in Section 3. Figure 4 shows the encoding.

The encoding is split in three encoders: the main encoder [- | walks through the structure
of LEMMA domain models to generate Jolie APIs using the encoders for operations ((-) and
for structures ([-7]), respectively.

The operations encoder ((-) generates Jolie interfaces based on procedures and functions in
the given models by translating structure-specific operations into Jolie operations. This translation
requires some care. On one hand, LEMMA’s procedures and functions are similar in nature
to methods of OOP, since they operate on data stored in their defining structure. On the other
hand, Jolie does not support objects in the OOP sense but rather separates data from code
that can operate on it (operations). Therefore, the encoding needs to decouple procedures and
functions from their defining structures as illustrated in Section 3 by the mapping of the LEMMA
domain concept ParkingSpaceBooking and its operation signature priceInDollars to the Jolie
interface ParkingSpaceBooking _interface with the operation priceInDollars.

Given a structure X, we extend the signature of its procedures with a parameter for repres-
enting the structure they act on and a return type X for the new state of the structure, essentially
turning them into functions that transform the enclosing structure. For instance, we regard a
procedure with signature (Y x -+ x Z) in X as a function with type X xY x ---x Z — X. This
approach is not new and can be found also in modern languages like Rust [12, 23] and Python [16].
The operation synthesised by the (-) encoder accepts the id_type generated by the [-] encoder
that, in turn, has a self leaf carrying the enclosing data structure (ids). The encoding of functions
follows a similar path. Note that, when encoding self leaves, we do not impose the constraint of
providing one such instance (represented by the 7 cardinality), but rather allow clients to provide
it (and leave the check of its presence to the API implementer).

The main encoder [- | and the structure encoder [-7 transform LEMMA types into Jolie
types. contexts translate into pairs of ///@beginCtx(context _name) and ///@QendCtx Joliedoc
comment annotations. All the other constructs translate into types and their subparts. When
translating procedures and functions, the two encoders follow the complementary scheme of
(-) and synthesise the types for the generated operations. The other rules are straightforward.

4

LEMMAZ2Jolie: Model-Driven Generation of Microservice Interfaces S. Giallorenzo et al.

[context id {CT}| = ///QbeginCta(id)

[cr]

///@QendCtx
(structure id [(STRF)| {FLD OPS}) = [///QSTRF) interface id_interface {{ OPS)ia}
(procedure id [(OPSF)] (FLD))a, = RequestResponse: [///QOPSF)] id(id_type)(ids)

(function (S | id,) id [(OPSF)] (FLD))a, RequestResponse: [///QOPSF] id(id_type)(([ST | id,))

type [structure id [(STRF)] {FLD}]
[OPST,, (structure id [(STRF)] {OPS})i

[structure id [(STRF)] {FLD OPS}]|

[procedure id [(OPSF)] (FLD) |;a. type id_type: void {self?: ids [FLD]}

type id_type: void {self?: ids [FLD]}

[function (id, | S) id [{OPSF)] (FLD) |;a,

[collection id {(S | id,)}] = typeid: void {[collection id {(S | id,)}]}
[enum id {id}] — type [enum id {id}]

[structure id [(STRF)] {FLD}] = [///QSTRF id: void {[FLD]}

['Sid [(FLDF)]] = [///QFLDF id: [S]

[id, id [(FLDF)]] = [///QFLDF)id: id,

[collection id {S}1] = ddx: [S]

[collection id {id, }] = idx: id,

[enum id {id}] = id: string(enum(“id"))

[int] = int

[unspecified] = undefined

Figure 4: Salient parts of the Jolie encoding for LEMMA’s domain modelling concepts.

5 Conclusion

This extended abstract summarises our presentation proposal to Microservices 2022, concerning
our first step towards the integration of two language-based approaches to Microservice Architecture
(MSA) engineering, namely the MSA-focused modelling ecosystem LEMMA and the microservice
programming language Jolie.

In particular, as done in this document, we intend to briefly introduce LEMMA’s Domain
Data Modelling Language (DDML; cf. Section 2) and Jolie data types and interfaces (Jolie APIs;
cf. Section 3), followed by the presentation of the general rules we followed to define our formal
encoding (cf. Section 4). Then, we will present our implementation of the encoding as a code
generator, called LEMMA2Jolie, which is applicable in MSA engineering practice to translate
LEMMA domain models into Jolie APIs.

The encoding/tool provides a basis to enable a software development process whereby mi-
croservice architectures can first be designed with the leading method of Domain-Driven Design
using LEMMA’s DDML, and then corresponding Jolie APIs are automatically generated. In the
presentation, we will detail how programmers can use LEMMAZ2Jolie to transit from microservice-
specific domain models expressed as LEMMA’s DDML models into Jolie APIs, which they can
then extend and use as guides to produce compliant implementations.

LEMMAZ2Jolie: Model-Driven Generation of Microservice Interfaces S. Giallorenzo et al.

References

(1]
2]
13l

4]

[5]
(6]
7]

18]

[19]

[20]

21]

[22]

[23]

D. Ameller et al. Development of service-oriented architectures using model-driven development:
A mapping study. Information and Software Technology, 62:42—66, 2015. Elsevier.

B. Combemale, R. B. France, J.-M. Jézéquel, B. Rumpe, J. Steel, and D. Vojtisek. Engineering
Modeling Languages: Turning Domain Knowledge into Tools. CRC Press, 2017.

R. Daigneau. Service Design Patterns. Addison-Wesley, 2012.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.
Microservices: Yesterday, today, and tomorrow. In M. Mazzara and B. Meyer, editors, Present and
Ulterior Software Engineering, pages 195-216. Springer, 2017.

E. Evans. Domain-Driven Design. Addison-Wesley, 2004.

T. Freeman and F. Pfenning. Refinement types for ML. In Proc. of the 1991 Conf. on Programming
Language Design and Implementation, pages 268-277, 1991.

S. Giallorenzo, F. Montesi, M. Peressotti, and F. Rademacher. Model-Driven Generation of
Microservice Interfaces: From LEMMA Domain Models to Jolie APIs, 2022.

S. Giallorenzo, F. Montesi, M. Peressotti, F. Rademacher, and S. Sachweh. Jolie and LEMMA:
Model-driven engineering and programming languages meet on microservices. In Coordination
Models and Languages, pages 276—284. Springer, 2021.

C. Guidi and B. Maschio. A jolie based platform for speeding-up the digitalization of system
integration processes. In Proceedings of the Second International Conference on Microservices
(Microservices 2019). 2019.

JHipster. Jhipster domain language (jdl), 2022-14-02.

S. Kapferer and O. Zimmermann. Domain-driven service design. In Service-Oriented Computing,
pages 189-208. Springer, 2020.

S. Klabnik and C. Nichols. The Rust Programming Language (Covers Rust 2018). No Starch Press,
2019.

F. Montesi, C. Guidi, and G. Zavattaro. Service-oriented programming with jolie. In A. Bouguettaya,
Q. Z. Sheng, and F. Daniel, editors, Web Services Foundations, pages 81-107. Springer, 2014.

S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly, 2015.

A. Oram. Ballerina: A Language for Network-Distributed Applications. O’Reilly, 2019.

Python Software Foundation. The Python Language Reference. 2021.

F. Rademacher, S. Sachweh, and A. Ziindorf. Deriving microservice code from underspecified domain
models using DevOps-enabled modeling languages and model transformations. In 2020 46th Euromicro
Conf. on Software Engineering and Advanced Applications (SEAA), pages 229-236. IEEE, 2020.

F. Rademacher, J. Sorgalla, P. Wizenty, S. Sachweh, and A. Ziindorf. Graphical and textual
model-driven microservice development. In Microservices: Science and Engineering, pages 147-179.
Springer, 2020.

F. Rademacher, J. Sorgalla, P. Wizenty, and S. Trebbau. Towards holistic modeling of microservice
architectures using LEMMA. In Companion Proc. of the 15th Europ. Conf. on Software Architecture.
CEUR-WS, 2021.

J. Soldani, D. A. Tamburri, and W.-J. V. D. Heuvel. The pains and gains of microservices: A
systematic grey literature review. Journal of Systems and Software, 146:215-232, 2018. Elsevier.

J. Sorgalla, P. Wizenty, F. Rademacher, S. Sachweh, and A. Ziindorf. Applying model-driven
engineering to stimulate the adoption of devops processes in small and medium-sized development
organizations. SN Computer Science, 2(6):459, 2021.

B. Terzi¢, V. Dimitrieski, S. Kordi¢, G. Milosavljevi¢, and I. Lukovié¢. Development and evaluation of
MicroBuilder: a model-driven tool for the specification of REST microservice software architectures.
Enterprise Information Systems, 12(8-9):1034-1057, 2018. Taylor & Francis.

The Rust Foundation. The Rust Reference. 2021.

	Introduction
	LEMMA Domain Modelling Concepts
	Jolie Types and Interfaces
	Encoding LEMMA Domain Models as Jolie APIs
	Conclusion

