A MAPE-K Approach to Autonomic Microservices*

4

Antonio Bucchiarone?, Claudio Guidi?, Ivan Lanese!, Nelly Bencomo?, and

Josef Spillner®

1 University of Bologna-INRIA, Italy, ivan.lanese@unibo.it
2 jtalianaSoftware, Imola, Italy, cguidi@italianasoftware.com
3 Fondazione Bruno Kessler, Italy, bucchiarone@fbk.eu
4 Aston University, Birmigham, UK, nelly.bencomo@durham.ac.uk
5 Zurich University of Applied Sciences, Switzerland, josef.spillner@zhaw.ch

Abstract

Microservices are an emerging architectural style advocating for small loosely-coupled
services in order to maximize scalability and adaptability. In order to help IT personnel,
adaptability can be put (completely or partially) under the responsibility of the system
using autonomic techniques, e.g., underpinned by a MAPE-K control loop. This paper
discusses possible trade-offs, challenges and support techniques for software architects in-
volved in building autonomic microservice-based systems.

1 Introduction

Software architectures continue to move towards a ubiquitously networked era. Containerization
technologies, together with the rapid spread of Cloud Computing, have changed the way a
computational resource is perceived, no more a hardware machine, but just a boz able to
execute software [14]. The box then runs as container [15], which is a single package of software
abstracted away from the host operating system, and hence, it can run across any platform or
cloud.

This industrial fact has severe impact on the way software is and will continue to be con-
ceived. Since computation is seen as a good that can be obtained and released fast and on
demand, it is quite obvious that it must be requested only when needed. Costs follow the
usage, indeed. For this reason, software is requested to be scalable, in other words it must be
designed and implemented to be flexible enough to follow the demand-and-load curves. New
architectural approaches emerged for addressing such an issue: microservices and serverless
architectures are today the main approaches for dealing with it [4]. Continuous integration
and delivery practices changed the way software production chains are conceived [7]. The cen-
tral idea is to deliver as fast as possible new versions and new functionalities, layering upon
an automatized infrastructure, which is able to enforce compilations, quality checks, tests and
deployment with minimum human intervention, if at all. The combination of all these forces
will bring us rapidly to the mentioned ubiquitously networked era, an age where software com-
ponents would be easily deployed and integrated in both private and public clouds. The main
objective is the reduction of costs and the increase of velocity while substantially reducing the
need of human intervention. Every aspect of the software delivery should be automatized, by
leaving to the human intervention only the intelligence support to provide and write the logic.

The increasing complexity of modern software, which requires to be flexible and rapidly de-
ployable, demands for new approaches to architectural design and system modeling. Innovative

*This paper has been already accepted in the poster track session of 19TH IEEE International Conference
on Software Architecture (ICSA 2022)



easychair: Running title head is undefined. Bucchiarone, Guidi, Lanese. Bencomo, Spillnert

engineering is always looking for adequate instruments to model and verify software systems
and support developers all along the development process to deploy correct software. Microser-
vices [4] is an architectural style originating from Service-Oriented Architectures (SOAs) and
introduced to provide: (i) high scalability, (ii) technology and language independence, (iii) sim-
ple maintainability and (iv) simple update and redeployment due to loose coupling among the
composing services. Reasoning in terms of microservices is essentially a dynamic architectural
decision problem to achieve the desired goals. As such, several areas of software engineering
can underpin microservices [10], such as, among others, service composition and orchestration,
runtime architectural adaptation, versioning, and Infrastructure as/from Code (IaC/IfC).

The uncertain and dynamic context of the ecosystems of microservices calls for adaptation
support similar to that provided by autonomic (a.k.a. self-*) systems [5] to be added into the
architecture. The autonomic approach allows the operator to provide high-level directives on
the desired outcome of the adaptation and leaving to the system itself the tedious and error-
prone work to transform it into actual architectural changes. A fully autonomic approach
is not always possible or even desirable, hence, in most of the cases, autonomic capabilities
complement manual interventions or directives from the IT personnel.

Such a perspective raises important issues related to the interactions between the running
environment and the microservices, because some of the autonomic actions can be provided
only by negotiating with the environment. As an example, let us consider a microservice that
asks for being scaled to address a load increment. Such an activity is in charge to the running
environment (Docker, Kubernetes, etc), thus the microservice must ask to the environment to
provide another instance of itself. Thus, the protocols for negotiating these kinds of actions
between the microservices and the environment should be rationalised.

There are several mechanisms which can be adopted towards autonomicity [5, 6]. These
solutions are generally underpinned by the fundamental ideas of feedback loops [3], which
comprise the activities of Monitor, Analyse, Plan and Execute (MAPE). The decision making for
adaptation is made according to trade-offs between positive and negative effects as consequences
of the adaptation actions. In the general setting of autonomic systems, two implementation
strategies have been discussed: adding an autonomic manager in charge of it or embedding the
autonomic capabilities within the managed system. In the context of microservices also the
environment, including, e.g., the Cloud or the container where the microservices are running,
can play a role, hence more trade-offs emerge and therefore they need to be discussed. In all the
cases, the entity in charge of the autonomic behaviour must acquire sufficient knowledge to take
on the activities that are to be automated. The knowledge to recognize the need for adaptation
and to automatically decide and perform the actions required needs to be maintained in a
knowledge base. The approach above is known as the MAPE-K loop [2].

The main aim of the present paper is to discuss different alternative solutions and trade-offs
related to the application of an autonomic approach based on the MAPE-K loop in microservice
scenarios. More in detail, we will present a vision using a graphical representation to highlight
which entity (microservices, environment or I'T personnel) takes responsibility of each MAPE-K
phase, and also discuss the trade-offs related to different design choices. We also highlight open
issues and research directions that need to be tackled to transform autonomic microservices
into viable industrial practice.

2 Our vision

We envision scenarios where microservice-based systems (MBS) are purposefully equipped with
autonomic capabilities to manage issues such as self-protection, self-healing, self-optimization,



easychair: Running title head is undefined. Bucchiarone, Guidi, Lanese. Bencomo, Spillnert

self-reconfiguration and so on. This complements the microservice approach, which aims at
automating aspects such as deployment and scalability, making a further step towards NoOps
scenarios [11].

As discussed earlier, autonomicity can be obtained using the classical MAPE-K approach.
The MAPE-K feedback control loop performs Monitor-Analyze-Plan-Execute phases over a
shared Knowledge [2]. The Monitoring (M) phase acquires data from the system and its envi-
ronment. Analysis (A) of the monitored data involves activities such as filtering or transforming
data, e.g. to reduce noise or to put them in a form suitable for elaboration. Then, Planning (P)
of future actions is done, keeping into account the result of the analysis as well as the knowledge
of the system held in the model. Finally, the Execution (E) of the planned actions should be
performed. This consists of changing the values on the actuator(s) in the system according to
the developed plan. A MAPE-K loop stores the Knowledge (K) required for decision-making
in what is called the Knowledge Base (KB).

When integrating a MAPE-K loop in an MBS there are various options related to which part
of the system performs the different phases involved in the loop. Possibilities include having
phases performed by the infrastructure (e.g., Containers, the Cloud, etc.), by each microservice
in addition to its functionalities, by ad-hoc microservices, or by groups of microservices. While
different decisions are suitable in different contexts, they come equipped with various constraints
and trade-offs. A main contribution of this paper is the analysis and discussion of such trade-
offs, aiming at providing guidelines for designers of autonomic microservice systems, taking into
account benefits and issues that come with different design choices.

To categorize the possible approaches to introduce the envisioned autonomic behaviours in
MBSs, we introduce a graphical notation to identify the responsibilities of intervention for the
different phases of the MAPE-K loop. In particular, in Figure la, we represent the interven-
tion responsibilities by actor (i.e. for the actors: humans, environment, and microservices) as
concentric circles:

e the external area represents human responsibility, namely the fact that the IT personnel
is in charge of the corresponding activity; of course if all the activities are under human
responsibility then the system is not autonomic at all;

e the inner area represents microservice responsibility: either dedicated microservices or
each microservice as part of its capability takes care of the activity;

e the area in the center represents the responsibility of the environment. This case may
denote that the activity is under the responsibility of the infrastructure on which the
microservices are running, e.g. a Cloud platform or a container, or more in general of any
automatic entity not part of the considered microservice system.

Since the MAPE-K phases form a loop, we represent them as different sectors of the same
circle as reported in Figure 1b. Note that we do not explicitly represent the knowledge base:
in many cases it is under the responsibility of the entity that takes care of the planning, since
planning makes extensive use of the knowledge base. Other options are also possible, however we
think that an explicit representation of the knowledge base would clutter the simple graphical
representation presented here. Therefore, we leave further analysis of this issue for future
work. We combine the two diagrams to describe an approach to autonomic microservices as
a scale diagram in Figure 1c. Essentially, each area of the figure represents whether the actor
corresponding to the circle takes some responsibility for the activity corresponding to the MAPE
sector: if the sector is white then it takes no responsibility; if it is (arbitrarily) coloured then
the actor has some responsibility.



easychair: Running title head is undefined. Bucchiarone, Guidi, Lanese. Bencomo, Spillnert

(a) Levels of responsibilities in autonomic microser- (b) MAPE phases as sectors.
vices.
M A o S— S——
1 ‘ N
i \ 71N // \\ \\
= 1 e -
W, L)
/
N\
E P )

(c) Aut L ce land (d) Special cases about the degree of autonomicity.
c) Autonomic microservice landscape.

7 f\\ 7 ™
& ®

(e) Self-scaling. (f) Proof of concept.

Figure 1: A Vision towards Autonomic Microservices.

On the one hand, note that for each MAPE sector at least one segment (i.e., portion of
circle in the sector) needs to be coloured since at least one actor must take the responsibility
for the activity. On the other hand, more than one segment can be coloured in a sector, since
multiple actors can cooperate in taking responsibility for the activity.

Let us note that systems more coloured towards the center are more autonomic than systems
more coloured at the border. Therefore, we argue that such a diagram can help architects, devel-
opers and sysadmins to grasp at the glance the degree of autonomicity of a running microservice
system, as well as the main responsibilities involved in the chosen approach. Further, the same
notation can also be used at the level of system design to highlight the main requirements.

Figure 1f depicts the scale diagram of the proof of concept described above. Here the
microservice is close to be a fully autonomic microservice. Indeed, only the execution phase is
performed together with the infrastructure.

The proof of concept above has been realized using the Jolie programming language [1],
where microservices can be deployed either together into a unique monolith or in a distributed
manner. The autonomic microservice can fragment itself and promoting one of its internal
components to become a scalable microservice by sending its definition to the environment.
Such an aspect may not be easy to implement when using other more mainstream technologies
for microservices. In general, building autonomic capabilities into microservices may not be
easy, however the use of dedicated languages can help [9].

4



easychair: Running title head is undefined. Bucchiarone, Guidi, Lanese. Bencomo, Spillnert

3 Roadmap

Service delivery is inherently characterised by differences in interest by engineers, providers and
consumers. We identify below five autonomic microservice challenges that must be overcome
in this context to be able to implement the vision previously outlined in business practice.

1. Standardised discoverable APIs. Interaction between the services and the infras-
tructure should take place via well-defined APIs. To allow deployment on multiple in-
frastructures and to reduce vendor-lockin such APIs should be standardized, so that the
same interface would be available on different platforms. Ideally, custom implementations
could be provided whenever the infrastructure does not cover them. A decision to use the
MAPE-K control loop to approach autonomicity could give guidelines on how to define
such a standardized API, which should reasonably involve functionalities for each of the
4 phases and for sharing the knowledge base K.

This conveys awareness on the situation - whether self-managed changes are allowed and
to which degree, versus immutable infrastructure requirements, from the provider to the
hosted services. Recent de-facto standards like the Open Service Broker API [13] have
demonstrated that a cross-provider discovery approach is possible.

2. Intent-based specification of autonomicity. Rather than specifying imperatively
all technical instructions on which change to perform under which condition, high-level
intents or rules (i.e. described instead of prescribed) that keep into account both technical
aspects (e.g., throughput) and economic concerns (e.g., price of resources) are to be
preferred. This allows for stating objectives such as ”any change is allowed as long as the
cost of service operation does not exceed a maximum threshold”. As usual, moving from
an imperative to a declarative approach makes the description of the autonomic behaviour
more flexible and easy to understand; yet the translation of such a specification to code
executable on top of the available API may become more complex.

3. Multi-cloud support. If autonomous services are meant to automate human logic on
what to run where, this includes necessarily decisions on when to activate additional
providers or migrate between providers. For this to be technically feasible then, shared
knowledge on what providers exist and what as-a-service models they support with which
non-functional properties need to be available.

4. Auto-versioning. If a configuration change happens at runtime, as advocated in the
autonomic approach, the previous configuration must continue to be available to ensure
zero downtime. The concept of versioning, which is used inconsistently across cloud
providers and frameworks [8, 12], needs to become a standard feature.

5. Ecosystem of MAPE-K logic. Many problems that are addressed by autonomy are
shared across application domains. Engineers would benefit from accessing libraries and
repositories containing custom logic for the analysis of monitoring data and the planning
of next steps. This logic could itself be offered in the form of microservices, such as
stateless functions delivering analytical results and planning decisions, for technological
coherence and increased chance of adoption.

References

[1] Jolie, the service-oriented programming language. https://jolie-lang.org.



easychair: Running title head is undefined. Bucchiarone, Guidi, Lanese. Bencomo, Spillnert

2]
3]

(4]

(5]

(6]

(9]

[10]
[11]

[12]

[13]
14]

[15]

An architectural blueprint for autonomic computing. Technical report, IBM, June 2005.

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle, Marin
Litoiu, Hausi Miiller, Mauro Pezze, and Mary Shaw. Engineering Self-Adaptive Systems through
Feedback Loops, pages 48—70. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Patricia Lago, Manuel Mazzara, Victor
Rivera, and Andrey Sadovykh, editors. Microservices, Science and Engineering. Springer, 2020.
Betty Cheng et al. Software engineering for self-adaptive systems: A research roadmap. In Software
Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar], volume 5525 of Lecture
Notes in Computer Science, pages 1-26. Springer, 2009.

Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter Steenkiste. Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. volume 37, pages 276-277,
01 2004.

Massimiliano Di Penta. Understanding and improving continuous integration and delivery practice
using data from the wild. In Proc. of the 13th Innovations in Software Engineering Conf. on
Formerly Known as India Software Engineering Conference, ISEC 2020, New York, NY, USA,
2020. ACM.

Sara Gholami, Alireza Goli, Cor-Paul Bezemer, and Hamzeh Khazaei. A framework for satisfying
the performance requirements of containerized software systems through multi-versioning. In Proc.
of the Int. Conf. on Performance Engineering, ICPE ’20, page 150-160, NY, USA, 2020. ACM.

Claudio Guidi, Ivan Lanese, Manuel Mazzara, and Fabrizio Montesi. Microservices: A language-
based approach. In Manuel Mazzara and Bertrand Meyer, editors, Present and Ulterior Software
Engineering, pages 217-225. Springer, 2017.

Sara Hassan, Rami Bahsoon, and Rick Kazman. Microservice transition and its granularity prob-
lem: A systematic mapping study. Software: Practice and Experience, 50, 06 2020.

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A survey of devops
concepts and challenges. ACM Computing Surveys (CSUR), 52(6):1-35, 2019.

L. Liu, X. He, Z. Tu, and Z. Wang. Mv4ms: A spring cloud based framework for the co-deployment
of multi-version microservices. In 2020 IEEE Int. Conf. on Services Computing (SCC), pages 194—
201, 2020.

OSBA. Open Service Broker API. https://github.com/openservicebrokerapi/servicebroker/
blob/master/spec.md, October 2020.

C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi. Cloud container technologies: A state-of-the-art
review. IEEE Transactions on Cloud Computing, 7(3):677-692, 2019.

Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu, and Wei Zhou. A comparative study
of containers and virtual machines in big data environment. In 11th IEEE Int. Conf. on Cloud
Computing, CLOUD 2018, San Francisco, CA, USA, pages 178-185. IEEE Computer Society,
2018.



	Introduction
	Our vision
	Roadmap

