Technical Debt and
Microservices

Valentina Lenarduzzi, Ph.D.
University of Oulu

* Assistant Professor Tenure Track (University of Oulu — Finland)

* Technical Debt, Software Quality, Maintenance and Evolution
* Microservices Bad Smells definition

* Processes, Motivations, and Issues for Migrating to Microservices

19" in the earlier stage career in software engineering domain*

*W. Eric Wong, Nikolaos Mittas, Elvira Maria Arvanitou, Yihao Li. A bibliometric assessment of software engineering themes, scholars and
institutions (2013—2020), Journal of Systems and Software, Volume 180, 2021, 2

%“--—r“: _” ¢

PN

4i I ..l IR gy
[4 : -q——-——
j B
i RGP = CURP RS S
‘ 7 L e b —

T Gt i comayisaarceans

m"""—- o —_—

mb~.-:~ B R el
fier object

._:.....

Software Evolves

Software Degradates

Gl GG GG G Gl

,' 2 - /)L:ar ' - 5
f» «amvm :;(gl\\)-
AP g@;’%{#’)ﬂy‘@na\

TG ST T h L
Firs jf.:,%@. ,ifﬁgﬂ\ 1
llrlﬁl’ffy“._’:-?q;_ﬁ-"mm-

J @l -E«:»Ei: :j“ =

Q -ggb.i-g\y'/, "3'2}9"’,'/!,!!'—'

Migration to Microservice

- Migration prioritization

« Only new features (Strangler pattern)
« Most problematic features

« Less problematic features

Strangler Pattern

Only new features are implemented as microservices
- The core of the software will be never “strangled”

Lack of complete overview on the migration path

Legacy business processes
need to be reengineered

Aging Microservices

The oldest Microservices are aging
- Becoming the legacy

REFATORING
IS FUNDAMENTAL

But ...

Posponed Activites

- During Rearchitecting / refactoring / evolution of systems several
activities are postponed

« Lack of time
- Lack of resources

- New Features are prioritized

Olaf Zimmermann, Mirko Stocker, Daniel Libke, Cesare Pautasso, Uwe Zdun. Microservice APl Patterns. https://microservice-api-patterns.org

Davide Taibi, Valentina Lenarduzzi and Claus Pahl. Processes, Motivations, and Issues for Migrating to Microservices Architectures: An Empirical Investigation. /IEEE Cloud
Computing, vol. 4, no. 5, pp. 22-32, 2017 12

The dark side of Developing

Technical Debt

* Sos ‘,
- - -

e

ey - L

T R

L%
Y%

"Shipping first time code is like going into debt”

“A little debt speeds development so long as it is paid
back promptly with a rewrite...”

“Every minute spent on not-quite-right code counts as
~ M interest on that debt”

Ward Cunningham

Technical Debt Definition

Debt = sub-optimal solution

Save time by non-applying the optimal solution
You gain a benefit now (borrow money)

But, you pay the consequences later (you will pay the interest)

Technical Debt, why?

« People commonly check their health (blood analysis, XRays ...)
« Machines are commonly checked for their health (

Why they do not do with code, architecture?

« Having a continuous check since from the beginning of the development
process can prevent issues that could became unmanageable if you do not

$

react immediately

Technical Debt

The Debt Metaphor

Use a credit card to obtain something now (short term)
« Pay for it later (future payment due)

 Plus interest (the cost of being able to do this)

Technical Debt

Visible

= Architectural,

Positive

Added Structural
Value functionality K711/
Negative Technical

Debt

Expensive!

P. Kruchten, R. L. Nord, and |. Ozkaya. Technical Debt: From Metaphor to Theory and Practice. |[EEE Software

Technical Debt

Principal
« Cost of fixing problems remaining in the code after release that must be
remediated

Interest
« Continuing IT costs attributable to the violations causing technical debt, i.e,

higher maintenance costs, greater resource usage, etc.

Technical Debt

The consequences of:

« Slapdash architecture
« Poor design
« Hasty coding (versus rapid)

« Lack of quality focus
« Others?

The danger occurs when the debt is not repaid
quickly. Every minute spent on not-quite-right
code results in interest on that debt.

http://en.wikipedia.org/wiki/Interest

Technical Debt

z Time to solve violation

Violations include:

« Syntactic violations;
e Smells,

« Other Violations considered “harmful” by the TD tool vendor

Technical Debt Issues

- Not only one Technical Debt

. Technical Debt is unavoidable
. What to do first?

- Prioritization

Technical Debt Type

C

) | |
[Infractructuré® e
; \ « ‘a -
) \) P
- Requiremen
) 7) Test @RS
Defect) / * /
Architectural - \A

Z. Li, P. Avgeriou, P. Liang. A systematic mapping study on technical debt and its management. Journal of Systems and Software (2015)

Architectural Debt

« Architectural Degradation
* Introduction of architectural smells

« Violation of architectural guidelines

 Postponed architectural decisions

24

Code Debt

- TD increases when migrating to Microservices

- Several moving parts, more code, potentially more issues

e | D) Trend e |D Trend == == == Predicted TD
without Migration

Valentina Lenarduzzi, Francesco Lomio, Nyyti Saarimaki, Davide Taibi. Does migrating a monolithic system to microservices decrease the technical debt? Journal of
Systems and Software, Volume 169, 2020.

25

Testing Debt

- Testing is more complex.

Several companies only perform unit test and end-to end test.
Regression tests are too expensive.

Hybrid test is often performed

Some services are hard to test (mocking is not always possible)

Infrastructure Debt

Lower in Microservices

Infrastructure before starting the development

How to start

FOCUS: MICROSERVICES

On the Definition
of Microservice
Bad Smells

Davide Taibi and Valentina Lenarduzzi, Tampere University of

Technology

To identify microservice-specific bad
smells, researchers collected evidence of
bad practices by interviewing developers
experienced with microservice-based systems.
They then classified the bad practices into
11 microservice bad smells frequently

‘harmful by

=1 B
==

Wl W W s
~

aduis

MICROSERVICES ARE CURRENTLY
enjoying increasing popularity and
diffusion in industrial environments,
being adopted by several big players
such as Amazon, LinkedIn, Netflix,
and SoundCloud. Microservices are
relatively small and autonomous ser-
vices that work together, are mod-
cled around a business capability,
and have a single and clearly defined
purpose.t? Microservices enable
independent deployment, allowing
small teams to work on separated
and focused services by using the
most suitable technologies for their

job that can be deployed and scaled
independently.'2 Microservices are
a newly developed architectural
style. Several patterns and platforms
such as nginx (www.nginx.org) and
Kubernetes (kubernetes.io) exist on
the market. During the migration
process, practitioners often face com-
mon problems, which are due mainly
to their lack of knowledge regarding
bad practices and patterns. 3

In this article, we provide a cata-
log of bad smells that are specific to
systems developed using a micro-
service architectural style, together

with possible solutions to overcome
these smells. To produce this catalog,
we surveyed and interviewed 72 ex-
perienced developers over the course
of two years, focusing on bad prac-
tices they found during the develop-
ment of microservice-based systems
and on how they overcame them. We
identified a catalog of 11 microservice-
specific bad smells by applying an
open and selective coding® proce-
dure to derive the smell catalog from
the practitioners’ ¢

The goal of th
practitioners avoil
tices altogether o
more cfficiently w
migrating monolit!
based systems.

As with code
smells, which s
monly considered
design,'¢ we de:
specific bad smel
service smells”
indicators of situa
desired patterns, a
practices—that
software quality
understandability,
blity, reusability, a
of the system unde

Several generic
detection tools a
been defined in
Moreover, sever
specific architectu
been defined.!® He
of our knowledge
work and, in partis
studies have propc
antipatterns, or
concerning micros
However, some
started to discuss
microservices. In
services AntiPatt:

2104.13303v1 [cs.SE] 27 Apr 2021

of depl

FRANCISCO PONCE, Universidad Técnica Federico Santa Maria, Chile
JACOPO SOLDANI, University of Pisa, ltaly

HERNAN ASTUDILLO, Universidad Técnica Federico Santa Maria, Chile
ANTONIO BROGI, University of Pisa, ltaly

Context: Securing microservice-based applications is crucial, as many IT companies are de
businesses through microservices. If security “smells” affect microservice-based applications, the
suffer from security leaks and need to be refactored to mitigate the effects of security smells th
Objective: As the currently available knowledge on securing microservices is scattered across di
of white and grey literature, our objective here is to distill well-known smells for securing r
together with the refactorings enabling to mitigate the effects of such smells.

Method: To capture the state of the art and practice in securing microservices, we conducted
review of the existing white and grey literature on the topic. We systematically analyzed 58 stuc
from 2014 until the end of 2020.

cach smell with the security properties it may violate and the refactorings enabling to mitigate

Conclusions: The security smells and the corresponding refactorings have pragmatic value for
who can exploit them in their daily work on securing microservices. They also serve as a star
researchers wishing to establish new research directions on securing microservices. crimmerm@hst.ch

1 INTRODUCTION

Microservices are on the rise for

SICS Software-Intensive Cyber-Physical Systems (2020) 35:3-15
hitps:/dol.0rg/10.1007/500450-019-00407-8.

SPECIAL ISSUE PAPER

Design principles, architectural smells and refactorings for
microservices: a multivocal review

Davide Neri' - Jacopo Soldani' - Olaf Zimmermann? - Antonio Brogi'

Published online: 3 September 2019
pringe pringer Nature 2019

Abstract

Potential benefits such as agile service delivery have led many companies to deliver their business capabilities through
° ; ’ P, : !

architectural smells that possibly violate the design principles of microservices. In this paper, we sys
white and grey literature on the topic, in order to identify the most recognised architectural smells fo
discuss the architectural refactorings allowing to resolve them.

Smells and Refactorings for Microservices Security: A Keywords Microservices - SOA - Architectural principles - Architectural smells
Multivocal Literature Review

1 Introduction bility and high observability of micr
failures [34]. A key research question
Microservices architectures, first discussed by Lewis and
Fowler [30], bring various advantages such as ease of deploy-
ment, resilience, and scaling [34]. Many IT companies
deliver their core business through microservice-based solu-
tions nowadays, with Amazon, Facebook, Google, LinkedIn,

How can architectural smells aff
ciples of microservices be detecte
refactoring?

of |

Migrating towards Microservices: Migration and Architecture

Smells
Andrés Carrasco Brent van Bladel Serge Demeyer
University of Antwerp University of Antwerp University of Antwerp
Antwerp, Belgium Antwerp, Belgium Antwerp, Belgium
andre pen.be brent be erge. pen.be
ABSTRACT The microservices architectural style has grown in popular-
Migeaing to microservices i an ertor prone process with decp pit- 11y or the last few years, due 1o its potential benefits,such as

Th
indicating possible violations of the
microservices s scattered over a cons
erature. Unfortunately, this makes it
body of knowledge on the topic, bot
ing to investigate on microservices anc

Netflix and Spotify being prominent examples. To deliver on

their promises, microservices must be designed in quality

and style, which is unfortunately not always the case [47].
Microservice-based architectures can be seen as peculiar

anextended setof [39,55]. working with them.
include shaping services around business concepts, decen- 8 With | . §
raising et c Our objective here is to systematic

ature, in order to identify the most rec
as architectural refactorings for resol
ring in an application (S4]. In partic
dcslgn principles dealing with the d

tions (from governance to data management), adopting a
culture of automation, ensuring the independent deploya-

Results: Ten bad smells for securing microservices are identified, which we organized in a taxonon &2 Davide Neri tions between

relatively
new architectural nyk, resulting in the lack of general guidelines
for migrating monoliths towards microservices. We present 9 com-
mon pitfalls in terms of bad smells with their potential solutions.
Using these bad smells, pitfalls can be identified and corrected in
the migration process.

CCS CONCEPTS
+ Software and its engineering — Extra-functional proper-
ties; Software architectures; Software creation and management;

KEYWORDS

davide.neri@di.unipi.it; davide.neri @unipi.it

Jacopo Soldani
jacopo.soldani @unipi it

process viewpoint, as per the 4+1 v
More precisely, we consider the indep:
microservices, their horizontal scalal
ures and decentralisation.

As recommended by Garousi el
both the state of the art and the
the field, we conducted a multivos
of the existing literature, including

Olaf Zimmermann

Antonio Brogi
antonio.brogi @unipi.it

University of Pisa, Pisa, ltaly

days, with b

IT (e.g., Amazon, Netflix, Spotify, and Twitter) already delivering their core busines
microservices [80]. This is mainly because microservice-based applications are cloud:
better exploiting the potentials of cloud hosting, and since they fully twin with I
continuous dehvery pracuces [2]. Microservices also bring various other advantages,

arXiv

enterprise (i.c., peer-reviewed papers) and gre

posts, industrial and be

2 University of Applid Sciences of Eastern Switzerland (HSR
FHO), Rapperswil, Switzerland

Smells, Migration Smells, MicroServices, Literature
Study

ACM Reference Format:

Andrés Carrasco, Brent van Bladel, and Serge Demeyer. 2018. Migrating
towards Microservices: Migration and Architecture Smells. In Proceedings
of the 2nd International Workshop on Refactoring (IwoR "18), September 4,
2018, Montpellier, France. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3242163.3242164

1 INTRODUCTION

[52]. Together with their gains, however, M.c.ues +aovw

bnng also some pains, and securing microservice-based applications is certainly one of those [76].
Microservice-based applications are essentially service-oriented applications adhering to an
extended set of design principles [88), e.g., shaping services around business concepts, decentral-

isation, and ensuring the independent deployability and horizontal scalability of microservices,
among others. Such additional principles make microservice-based applications not only service-
oriented, but also highly distributed and dynamic. As a result, other than the classical security issues
and best-practices for service-oriented applications, microservices bring new security challenges
[76). For instance, being much more distributed than traditional service-oriented applications,

microservice-based

expose more endpoints, thus

the surface prone to security

attacks [39]. It is also crucial to establish trust among the microservices forming an application and
to manage distributed secrets, whereas these concerns are of much less interest in traditional web
services or monolithic applications [85]. Another example follows from the many communications
occurring among the microservices forming an application, which —if not properly handled— can

Authors’ addresses: Francisco Ponce, fr

usm.cl, U dad Técnica Federico Santa Maria,

Valparaiso, Chile; Jacopo Soldani, jacopo.soldani@unipi.it, University of Pisa, Pisa, ltaly; Hernin Astudillo, hernan@inf.
utfsm.cl, Universidad Técnica Federico Santa Maria, Valparaiso, Chile; Antonio Brogi, antonio brogi@unipi.it, University of

Smells Harmfullnes?

Pisa, Pisa, Italy.

technology heterogeneity, resilience, scalability, cased deployment,
reusability, and among others [51).
Moreover, some rescarch has reported reduced complexity, lower
coupling, higher cohesion, simpler integration, better reusability,
and performance increase after migrating to a microservices archi-
tecture [9, 27]. However, the benefits of adopting a microservices
architecture come with the complexities of distributed systems,
such as the need for resilience, scaling, and data consistency [43].
Many new technologies have emerged in recent years for deal-
ing with these complexities, such as containerization, automated
and scaling ons; these are con-
sidered enablers for the growth of microservices. Moreover, rapid
provisioning, basic monitoring and rapid application deployment
are prerequisites for any microservices application [21]. Such re-
quirements are inherently available in the cloud, thus becoming
the default home for microservices.

Regardless of the inherent in mi ices, a trend
on migrating monolithic applications towards microservices archi-
tectures has become apparent. Multiple development teams have
published their experience migrating to a microservices architec-
ture, including some success stories. However, due to the nature of
‘microservices, following such advices may not be suitable for every
strategy. Therefore, publicly available knowledge in this migration
trend, such as best practices, success stories, and pitfalls should be

i tyle for devel licat
nals par) felly deployable sensces communi. _ collected. The subscquent consolidation of this knowledge in form
cating with lightweight [23]. The term of migration and s can provide

as become a buzzword nowadays. While some debate s still on-
going on whether microservices is an architectural style itself, or
simply a way of doing Service-Oriented Architectures (SOA), there
is a concrete distinction on its realization [61].

There is not a one-size-fits-all strategy for microservices, i.e.,
cach solution has a different strategy in place. This plethora of
strategies makes the outlining of its characteristics difficult. How-
ever, some characteristics are common among microservices, such
as the componentization via services, smart endpoints with dumb
pipes, and decentralization [23].

Permision to make diial o hard copies fall o prt ofthis work o personal
or distribute

P
oM
Tocopy. blish,

o
fee. Request permissions from permissions@acm.org.
IR ‘18, September 4, 2015, Montpeller, France

© 2018 Association for Cor

ACM ISBN 975-1-4503-5974-0/18/05...15.00
hitpsy/doi.org/10.1145/3242163.3242164

for teams looking to migrate their applications into microservices.
In this paper, we present 5 new architecture and 4 new migra-
tion bad smells found by digesting 58 different sources from the
academia and grey literature. The rest of this paper is structured
as follows. Section 2 provides an overview of related work. Sec-
tion 3 presents the research questions, and Section 4 explains our
‘methodology. Section 5 presents the 5 new architecture bad smells,
whereas the 4 new migration bad smells are presented in Section 6.
Section 7 discusses the threats to validity, and Section & concludes.

2 RELATED WORK

Refactoring is part of the Software Engineering Body of Knowledge
(SWEBOK). Initially refactoring was intended for restructuring
code. However, Stal extended the concept of refactoring to include
software architecture refactoring [53). When refactoring an archi-
tecture, the software is changed in a holistic manner for addressing
architecture smells.

28

Possible Solutions

Define clear architectural guidelines

* No over-engineering

« Adopt architectural patterns

« https://microservice-api-patterns.org*

 Keep Anti-Patterns and Bad-Smells under control
« Ildentify a whitelist and blacklist of allowed technologies

« Define guidelines for adding new services

[*] Olaf Zimmermann, Mirko Stocker, Daniel Libke, Cesare Pautasso, Uwe Zdun. Microservice API Patterns. https://microservice-api-patterns.org

29

https://microservice-api-patterns.org/

Main issues

« Architectural guidelines need to be updated (continuously)
« Lack of tools for detecting architectural patterns and anti-patterns

« Very powerful technologies might be tempting

« E.g. Service meshes vs API Gateway

30

Conclusions

* Microservices are now mainstream

« Systems are aging

* Need to control their evolution

« Keep Technical Debt under control

* Need for tools
« Patterns, anti-patterns

» Architectural guidelines compliancy

31

\l/

s

OULUN
YLIOPISTO

