
Technical Debt and 
Microservices

Valentina Lenarduzzi, Ph.D.
University of Oulu

1



Oulun yliopisto2

• Assistant Professor Tenure Track (University of Oulu – Finland)

• Technical Debt, Software Quality, Maintenance and Evolution
• Microservices Bad Smells definition

• Processes, Motivations, and Issues for Migrating to Microservices

• 19th in the earlier stage career in software engineering domain*

*W. Eric Wong, Nikolaos Mittas, Elvira Maria Arvanitou, Yihao Li. A bibliometric assessment of software engineering themes, scholars and 
institutions (2013–2020), Journal of Systems and Software, Volume 180, 2021,



Oulun yliopisto3



Oulun yliopisto

Software Evolves

4



Oulun yliopisto

Software Degradates

5



Oulun yliopisto

Migration to Microservice

• Migration prioritization

• Only new features (Strangler pattern)

• Most problematic features

• Less problematic features

6



Oulun yliopisto

Strangler Pattern

• Only new features are implemented as microservices

• The core of the software will be never “strangled”

• Lack of complete overview on the migration path 

7



Oulun yliopisto

Legacy business processes 
need to be reengineered

8



Oulun yliopisto

Aging Microservices 

9

• The oldest Microservices are aging
• Becoming the legacy



Oulun yliopisto

REFATORING 
IS FUNDAMENTAL

10



Oulun yliopisto11

But …



Oulun yliopisto

Posponed Activites

• During Rearchitecting / refactoring / evolution of systems several
activities are postponed
• Lack of time

• Lack of resources

• New Features are prioritized

12
Davide Taibi, Valentina Lenarduzzi and Claus Pahl. Processes, Motivations, and Issues for Migrating to Microservices Architectures: An Empirical Investigation. IEEE Cloud
Computing, vol. 4, no. 5, pp. 22-32, 2017

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, Uwe Zdun. Microservice API Patterns. https://microservice-api-patterns.org



Oulun yliopisto

The dark side of Developing

13



Oulun yliopisto

Technical Debt? 

"Shipping first time code is like going into debt”

“A little debt speeds development so long as it is paid
back promptly with a rewrite...”

“Every minute spent on not-quite-right code counts as
interest on that debt”

Ward Cunningham



Oulun yliopisto

Technical Debt Definition 

Debt = sub-optimal solution
Save time by non-applying the optimal solution

• You gain a benefit now (borrow money) 

• But, you pay the consequences later (you will pay the interest) 



Oulun yliopisto

Technical Debt, why?
• People commonly check their health (blood analysis, XRays …)
• Machines are commonly checked for their health (

Why they do not do with code, architecture ….?

• Having a continuous check since from the beginning of the development 
process can prevent issues that could became unmanageable if you do not 
react immediately

Technical Debt 

16



Oulun yliopisto

The Debt Metaphor

• Use a credit card to obtain something now 

• Pay for it later 

• Plus interest

(short term)

(future payment due)

(the cost of being able to do this)



Oulun yliopisto

Technical Debt

P. Kruchten, R. L. Nord, and I. Ozkaya. Technical Debt: From Metaphor to Theory and Practice. IEEE Software



Oulun yliopisto

Technical Debt

Principal
• Cost of fixing problems remaining in the code after release that must be

remediated

Interest
• Continuing IT costs attributable to the violations causing technical debt, i.e,

higher maintenance costs, greater resource usage, etc.



Oulun yliopisto

Technical Debt

The consequences of:

• Slapdash architecture
• Poor design
• Hasty coding (versus rapid)
• Lack of quality focus
• Others?

The danger occurs when the debt is not repaid
quickly. Every minute spent on not-quite-right
code results in interest on that debt.

http://en.wikipedia.org/wiki/Interest


Oulun yliopisto

Technical Debt Calculation

!𝑇𝑖𝑚𝑒 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

Violations include:

• Syntactic violations;
• Smells,
• Other Violations considered “harmful” by the TD tool vendor



Oulun yliopisto

Technical Debt Issues
• Not only one Technical Debt
• Technical Debt is unavoidable
• What to do first?

• Prioritization

22



Oulun yliopisto

Technical Debt Type

Z. Li, P. Avgeriou, P. Liang. A systematic mapping study on technical debt and its management. Journal of Systems and Software (2015)

Code

Test
Defect

Architectural

Requirement

Infractructure



Oulun yliopisto

Architectural Debt

• Architectural Degradation 
• Introduction of architectural smells

• Violation of architectural guidelines

• Postponed architectural decisions 

24



Oulun yliopisto

Code Debt
• TD increases when migrating to Microservices
• Several moving parts, more code, potentially more issues

25

Valentina Lenarduzzi, Francesco Lomio, Nyyti Saarimäki, Davide Taibi. Does migrating a monolithic system to microservices decrease the technical debt? Journal of 
Systems and Software, Volume 169, 2020.



Oulun yliopisto

Testing Debt

• Testing is more complex. 

• Several companies only perform unit test and end-to end test. 

• Regression tests are too expensive. 

• Hybrid test is often performed

• Some services are hard to test (mocking is not always possible)

26



Oulun yliopisto

Infrastructure Debt

• Lower in Microservices

• Infrastructure before starting the development 

27



Oulun yliopisto

How to start

28Smells Harmfullnes?



Oulun yliopisto

Possible Solutions
• Define clear architectural guidelines

• No over-engineering

• Adopt architectural patterns
• https://microservice-api-patterns.org*

• Keep Anti-Patterns and Bad-Smells under control

• Identify a whitelist and blacklist of allowed technologies

• Define guidelines for adding new services

29[*] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, Uwe Zdun. Microservice API Patterns. https://microservice-api-patterns.org

https://microservice-api-patterns.org/


Oulun yliopisto

Main issues 

• Architectural guidelines need to be updated (continuously)

• Lack of tools for detecting architectural patterns and anti-patterns

• Very powerful technologies might be tempting
• E.g. Service meshes vs API Gateway

30



Oulun yliopisto

Conclusions
• Microservices are now mainstream

• Systems are aging

• Need to control their evolution 
• Keep Technical Debt under control 

• Need for tools
• Patterns, anti-patterns

• Architectural guidelines compliancy

31




