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• Technical Debt, Software Quality, Maintenance and Evolution
• Microservices Bad Smells definition

• Processes, Motivations, and Issues for Migrating to Microservices

• 19th in the earlier stage career in software engineering domain*

*W. Eric Wong, Nikolaos Mittas, Elvira Maria Arvanitou, Yihao Li. A bibliometric assessment of software engineering themes, scholars and 
institutions (2013–2020), Journal of Systems and Software, Volume 180, 2021,
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Software Evolves
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Software Degradates
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Migration to Microservice

• Migration prioritization

• Only new features (Strangler pattern)

• Most problematic features

• Less problematic features
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Strangler Pattern

• Only new features are implemented as microservices

• The core of the software will be never “strangled”

• Lack of complete overview on the migration path 
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Legacy business processes 
need to be reengineered
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Aging Microservices 
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• The oldest Microservices are aging
• Becoming the legacy
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REFATORING 
IS FUNDAMENTAL

10



Oulun yliopisto11

But …
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Posponed Activites

• During Rearchitecting / refactoring / evolution of systems several
activities are postponed
• Lack of time

• Lack of resources

• New Features are prioritized

12
Davide Taibi, Valentina Lenarduzzi and Claus Pahl. Processes, Motivations, and Issues for Migrating to Microservices Architectures: An Empirical Investigation. IEEE Cloud
Computing, vol. 4, no. 5, pp. 22-32, 2017

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, Uwe Zdun. Microservice API Patterns. https://microservice-api-patterns.org
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The dark side of Developing
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Technical Debt? 

"Shipping first time code is like going into debt”

“A little debt speeds development so long as it is paid
back promptly with a rewrite...”

“Every minute spent on not-quite-right code counts as
interest on that debt”

Ward Cunningham
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Technical Debt Definition 

Debt = sub-optimal solution
Save time by non-applying the optimal solution

• You gain a benefit now (borrow money) 

• But, you pay the consequences later (you will pay the interest) 
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Technical Debt, why?
• People commonly check their health (blood analysis, XRays …)
• Machines are commonly checked for their health (

Why they do not do with code, architecture ….?

• Having a continuous check since from the beginning of the development 
process can prevent issues that could became unmanageable if you do not 
react immediately

Technical Debt 
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The Debt Metaphor

• Use a credit card to obtain something now 

• Pay for it later 

• Plus interest

(short term)

(future payment due)

(the cost of being able to do this)
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Technical Debt

P. Kruchten, R. L. Nord, and I. Ozkaya. Technical Debt: From Metaphor to Theory and Practice. IEEE Software
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Technical Debt

Principal
• Cost of fixing problems remaining in the code after release that must be

remediated

Interest
• Continuing IT costs attributable to the violations causing technical debt, i.e,

higher maintenance costs, greater resource usage, etc.
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Technical Debt

The consequences of:

• Slapdash architecture
• Poor design
• Hasty coding (versus rapid)
• Lack of quality focus
• Others?

The danger occurs when the debt is not repaid
quickly. Every minute spent on not-quite-right
code results in interest on that debt.

http://en.wikipedia.org/wiki/Interest
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Technical Debt Calculation

!𝑇𝑖𝑚𝑒 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

Violations include:

• Syntactic violations;
• Smells,
• Other Violations considered “harmful” by the TD tool vendor
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Technical Debt Issues
• Not only one Technical Debt
• Technical Debt is unavoidable
• What to do first?

• Prioritization
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Technical Debt Type

Z. Li, P. Avgeriou, P. Liang. A systematic mapping study on technical debt and its management. Journal of Systems and Software (2015)

Code

Test
Defect

Architectural

Requirement

Infractructure
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Architectural Debt

• Architectural Degradation 
• Introduction of architectural smells

• Violation of architectural guidelines

• Postponed architectural decisions 
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Code Debt
• TD increases when migrating to Microservices
• Several moving parts, more code, potentially more issues

25

Valentina Lenarduzzi, Francesco Lomio, Nyyti Saarimäki, Davide Taibi. Does migrating a monolithic system to microservices decrease the technical debt? Journal of 
Systems and Software, Volume 169, 2020.
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Testing Debt

• Testing is more complex. 

• Several companies only perform unit test and end-to end test. 

• Regression tests are too expensive. 

• Hybrid test is often performed

• Some services are hard to test (mocking is not always possible)
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Infrastructure Debt

• Lower in Microservices

• Infrastructure before starting the development 
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How to start

28Smells Harmfullnes?



Oulun yliopisto

Possible Solutions
• Define clear architectural guidelines

• No over-engineering

• Adopt architectural patterns
• https://microservice-api-patterns.org*

• Keep Anti-Patterns and Bad-Smells under control

• Identify a whitelist and blacklist of allowed technologies

• Define guidelines for adding new services

29[*] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, Uwe Zdun. Microservice API Patterns. https://microservice-api-patterns.org

https://microservice-api-patterns.org/
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Main issues 

• Architectural guidelines need to be updated (continuously)

• Lack of tools for detecting architectural patterns and anti-patterns

• Very powerful technologies might be tempting
• E.g. Service meshes vs API Gateway
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Conclusions
• Microservices are now mainstream

• Systems are aging

• Need to control their evolution 
• Keep Technical Debt under control 

• Need for tools
• Patterns, anti-patterns

• Architectural guidelines compliancy
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