
Microservices Community 2023 International Conference on Microservices

Energy-Consumption Analysis for
Cloud-Native Development Approaches

Michele Danieli1 · Giuseppe De Palma2

1 Imolainformatica, Imola, Italy
2 University of Bologna, Bologna, Italy

B giuseppe.depalma2@unibo.it

Abstract. Energy consumption analysis of cloud computing approaches

(microservices, serverless computing, and WebAssembly-based serverless)

provides insights for informed decision-making in application design, plat-

form selection, and energy efficiency. We analyse an application use case

and compare its energy consumption across the three approaches: con-

tainerized service-oriented application, serverless app on OpenWhisk, and

on our custom WebAssembly-based serverless platform.

1 Introduction

The growing demand for efficient software solutions has spurred innovative approaches to appli-

cation development and deployment. Among these approaches, serverless computing has gained

significant attention for its scalability and cost reduction potential. While initially dominated by

main cloud providers, open-source serverless platforms like Apache OpenWhisk [2] have emerged

and now power the serverless offerings of various cloud vendors [7, 11, 9]. As cloud-based solutions

become more essential, the energy consumption of software has become a critical issue in today’s

world. The energy demands and environmental impact of data centers are now central concerns

for environmentally conscious individuals and organizations. Consequently, comprehending the en-

ergy implications of various architectural choices and platforms is vital for promoting sustainable

software development. In the case of serverless platforms, one of the most significant factors im-

pacting the energy consumption is the functions’ cold-start time experienced by virtual machine and

container-based serverless platforms [13]. The cold-start problem arises when a serverless function

is triggered, but the underlying infrastructure must first allocate resources and initialize an execution

environment leading to noticeable delays. A novel cloud technology with the potential to contribute

in this aspect is WebAssembly [15]. WebAssembly is a binary instruction format designed for a stack-

based virtual machine, used by several serverless platforms [8, 10, 14]. WebAssembly functions can

be pre-compiled into a binary format, therefore the worker node of a platform can directly execute

the function code without the need for an extensive setup processes.

Our work provides an analysis comparing the energy consumption of three different approaches:

a containerized service-oriented application, a serverless app on OpenWhisk, and an equivalent server-

less app with WebAssembly-functions on our custom serverless platform. We consider the influence

of underlying infrastructure and deployed services, aiming to offer valuable insights for developers,

architects, and organizations. By evaluating the environmental sustainability of these paradigms, we

aim to assist decision-making regarding application design, platform selection, and energy-efficient

software development.

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.



2 Energy Consumption Comparative Analysis

In recent years, the rise of serverless systems and application architectures has drawn attention to

their environmental impact. In recent years, researchers have emphasized the importance of devel-

oping a model to measure the energy footprint of serverless computing and evaluate resource con-

sumption at various abstraction layers [13]. There has also been an increasing focus on analyzing

power consumption within serverless workloads, particularly in the context of machine learning,

which has gained significant popularity nowadays [12]. These analysis can help to better compre-

hend how non-functional aspects such as sustainability and costs are relevant in architectural deci-

sions, therefore we aim to provide a comparative analysis of energy consumption in application use

cases across different cloud computing approaches, including containers and WebAssembly-based

solutions. We established a controlled environment using Kubernetes, a widely-used container or-

chestration platform [4]. Within this environment, we employed Kepler [3] and Prometheus [6] for

metrics gathering, along with Power API [5] to measure energy consumption on the nodes. In our

analysis, we gather real-time CPU power consumption data through the Intel CPU HWPC Sensor,

while with Kepler we have access to container-level data such as total time for CPU usage and total

packets sent and received for network usage.

Figure 1 depicts the application use-case. The application is composed of several sensors that

send data, which are processed by a parser service/function to normalize it and then sent to an ag-

gregator service/function. The processed data is then stored and used by a dashboard. The scenario

depicts a typical IoT application, e.g., a lab or a smart home, with possibly a division between the

edge (with the parser and raw store) and the cloud (with the aggregator service and the rest of the

application). We deployed the containerized application on a Kubernetes installation and conducted

a series of tests using JMeter [1] to simulate varying scenarios. We considered several intensity and

traffic profiles to compare the behaviors of the different approaches on a 3 nodes cluster setup.

Figure 1: The application scenario schema used in the experiments.

3 Our Presentation

In our presentation at Microservices 2023, we will provide an overview of the Apache OpenWhisk

and our custom WebAssembly-based platform. We will discuss energy-consumption implications

of using the serverless approach and how the cold-start problem’s impact can affect sustainability,

together with how WebAssembly can help. Finally, we will exhibit a use case to show the contrast

its energy usage between a traditional implementation (with containers), a traditional serverless app

and a WebAssembly-based serverless app.

2



References

[1] Apache jmeter. https://jmeter.apache.org/.

[2] Apache openwhisk. https://openwhisk.apache.org/.

[3] Kepler. https://sustainable-computing.io/.

[4] Kubernetes. https://kubernetes.io/.

[5] Powerapi. https://powerapi.org/.

[6] Prometheus. https://prometheus.io/.

[7] IBM Cloud. Ibm cloud functions. https://cloud.ibm.com/functions/.

[8] Cloudflare. Cloudflare workers. https://workers.cloudflare.com/.

[9] Adobe Cloud Native Code. Adobe cloud native code. https://developer.adobe.com/runtime/.

[10] Fastly. Fastly compute@edge. https://www.fastly.com/products/edge-compute.

[11] Digital Ocean. Digital ocean functions. https://www.digitalocean.com/products/functions.

[12] Panos Patros, Josef Spillner, Alessandro V Papadopoulos, Blesson Varghese, Omer Rana, and

Schahram Dustdar. Toward sustainable serverless computing. IEEE Internet Computing,

25(6):42–50, 2021.

[13] Alexander Poth, Niklas Schubert, and Andreas Riel. Sustainability efficiency challenges of mod-

ern it architectures–a quality model for serverless energy footprint. In Systems, Software and

Services Process Improvement: 27th European Conference, EuroSPI 2020, Düsseldorf, Germany,

September 9–11, 2020, Proceedings 27, pages 289–301. Springer, 2020.

[14] WasmEdge. Wasmedge. https://wasmedge.org/.

[15] WebAssembly. Webassembly. https://webassembly.org/.

3

https://jmeter.apache.org/
https://openwhisk.apache.org/
https://sustainable-computing.io/
https://kubernetes.io/
https://powerapi.org/
https://prometheus.io/
https://cloud.ibm.com/functions/
https://workers.cloudflare.com/
https://developer.adobe.com/runtime/
https://www.fastly.com/products/edge-compute
https://www.digitalocean.com/products/functions
https://wasmedge.org/
https://webassembly.org/

	Introduction
	Energy Consumption Comparative Analysis
	Our Presentation

