
Microservices Community 2023 International Conference on Microservices

Quantum Microservices Development
and Deployment

Enrique Moguel1 · Jose Garcia-Alonso2 · Majid Haghparast3 · Juan M.
Murillo 1

1 Computing and Advanced Technologies Foundation of Extremadura, Carretera Nacional

521, Km 41,8, Cáceres, 10071, Spain
2 Quercus Software Engineering Group, Universidad de Extremadura, Avda. de la

Universidad, s/n, Cáceres, 10004, Spain
3 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

B enrique@unex.es

Abstract. Early advances in the field of quantum computing have provided

new opportunities to tackle intricate problems in areas as diverse as math-

ematics, physics, or healthcare. However, the technology required to con-

struct such systems where different pieces of quantum and classical soft-

ware collaborate is currently lacking. For this reason, significant advance-

ments in quantum service-oriented computing are necessary to enable de-

velopers to create and operate quantum services and microservices com-

parable to their classical counterparts. Therefore, the core objective of this

work is to establish the necessary technological infrastructure that enables

the application of the benefits and lessons learned from service-oriented

computing to the domain of quantum software engineering. To this end, we

propose a pipeline for the continuous deployment of services. Additionally,

we have validated the proposal by making use of a modification of the Ope-

nAPI specification, the GitHub Actions, and AWS.

1 Introduction

Quantum computing has garnered considerable attention across a multitude of research domains,

encompassing mathematics and physics, with a primary emphasis on constructing increasingly po-

tent quantum computers and enhancing qubit stability. Additionally, disciplines such as economics

and healthcare have focused on formulating novel quantum algorithms tailored to specific problem

domains [10]. Nevertheless, the current research landscape exhibits a dearth of concerted efforts

toward the advancement of technologies dedicated to the construction of quantum software [2].

Contemporary information systems exhibit a pervasive complexity arising from their composition

of discrete components that are globally distributed and interconnected through intricate commu-

nication infrastructures and protocols. These components, which tend to be encapsulated as ser-

vices, possess well-defined responsibilities. The realization of such systems is made feasible through

a range of technologies, including Service Oriented Computing and cloud computing [8]. Adopting

this architectural approach to software system development confers several advantages, such as cost

optimization by paying solely for utilized infrastructure, and the attainment of desirable attributes

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.



such as heightened interoperability, autonomy, reduced coupling, reusability, maintainability, relia-

bility, scalability, and security.

While the future of quantum software remains uncertain, certain features can be confidently pre-

dicted: 1) quantum software is expected to coexist alongside classical software and information sys-

tems; 2) its primary focus will be on solving problems that are beyond the capabilities of classical

systems; and 3) the utilization of service-oriented principles is widely regarded as the most effective

approach for managing the collaboration between heterogeneous systems.

However, the technology required to construct such systems where different pieces of quantum

and classical software collaborate is currently lacking [6]. For this reason, significant advancements in

quantum service-oriented computing are necessary to enable developers to create and operate quan-

tum services and microservices comparable to their classical counterparts. These advancements will

pave the way for the creation of hybrid systems that seamlessly integrate quantum and classical com-

ponents, offering a unified and cohesive environment for collaborative problem-solving.

In summary, Quantum Software Engineering is expected to become a prominent field motivating

software engineers. To realize this vision, the development of techniques and tools that streamline

the construction of complex systems within the realm of Quantum Computing is imperative.

Therefore, the core objective of this work is to establish the necessary technological infrastructure

that enables the application of the benefits and lessons learned from service-oriented computing

to the domain of quantum software engineering. Additionally, we have validated the proposal by

making use of a modification of the OpenAPI specification, the GitHub Actions, and AWS.

2 Background

The power of quantum computers stems from their ability to solve problems categorized as bounded-

error quantum polynomial time (BQP) problems. These are decision problems that can be solved

by a quantum computer in polynomial time, albeit with a certain margin of error. It is currently

conjectured that the class BQP encompasses class P, signifying that quantum computers can solve

problems that classical computers can also solve efficiently. However, BQP is also believed to include

problems that lie outside the class P, making them of great interest to researchers.

In conclusion, the exploration and utilization of problems within the BQP class hold both theoret-

ical and practical significance, ranging from showcasing quantum supremacy to enabling advance-

ments in areas like cryptography and quantum system simulation [1].

Indeed, the coexistence of classical and quantum computers is a natural consequence of the cur-

rent state of quantum technology, which is still expensive and in its early stages of development. The

transition to the new quantum computing paradigm cannot happen instantaneously, necessitating

the parallel operation of classical and quantum systems. In this context, relying solely on the progress

of quantum computer science is insufficient to effectively realize the potential of quantum comput-

ing and overcome the existing challenges.

To address this need, the establishment of a new field called "Quantum Software Engineering"

is imperative. This field focuses on innovating software development methodologies that effectively

map practical problems onto quantum computers [4]. The goal is to enable quantum software en-

gineers to design and implement impactful software applications that leverage the computational

speed and capabilities offered by quantum computers [7]. Various aspects of software engineering,

ranging from requirement analysis to software reuse, require reevaluation and adaptation to accom-

modate the development of complex quantum software [2, 5].

2



While there are numerous quantum programming languages, SDKs, and platforms available, they

alone are not sufficient to meet the demands of quantum software development [2]. This is primarily

due to the lack of a solid methodological foundation in quantum software engineering.

In addition, in the context of quantum Continuous Deployment (CD), there have been proposals

to incorporate quantum algorithms into different stages of the CD cycle. These proposals take into

account characteristics specific to quantum computing, such as the number of qubits, cloud accessi-

bility, and error rates of quantum machines. However, no tools or implementations have been devel-

oped to assist developers in this process. As a result, despite the existence of proposals to integrate

quantum algorithms into CD stages, certain aspects of quantum CD remain unaddressed. Specifi-

cally, critical phases like design and deployment require careful consideration. This paper aims to

cover these aspects and optimize the generation and deployment processes, thereby accelerating the

delivery of quantum computing applications.

Considering the limitations and the anticipated migration towards hybrid systems where classical

software interfaces with quantum algorithms [11], this paper specifically focuses on Service Engineer-

ing for Quantum systems. By applying service engineering principles to quantum systems, the aim is

to develop methodologies and techniques that facilitate the construction and integration of classical

and quantum software components within hybrid systems.

3 Proposal for a quantum service-oriented architecture

3.1 Quantum Service Engineering

In the current landscape, most existing quantum computers are accessible through the cloud via a

model known as Quantum Computing as a Service (QCaaS) [12]. QCaaS enables developers to access

quantum hardware, but it heavily relies on specific hardware configurations, requiring a high level of

proficiency in quantum computing to fully harness its advantages.

To enhance the abstraction level of QCaaS, several ongoing research efforts are underway. Com-

mercial platforms such as Amazon Braket provide a development environment for software engineers

to build quantum algorithms, test them on simulators, and execute them on various quantum hard-

ware platforms transparently. Another example is QPath, an ecosystem that integrates the classical

and quantum domains within a quantum development and application lifecycle platform, catering

to a wide range of potential applications with high-quality quantum software.

In the academic realm, some works have emerged in the field of quantum software engineering

[14, 9]. These works primarily focus on translating software engineering principles to the domain of

quantum software. However, there are relatively few works that specifically address service engineer-

ing for quantum software.

Introducing service engineering tools to quantum software development could significantly ad-

vance the field of quantum software engineering. Emerging works, such as [9], propose concepts like

Quantum Application as a Service (QaaS) to bridge the gap between service engineering and quan-

tum software. These efforts aim to apply service-oriented principles to quantum software, enabling

advancements in the servitization of quantum algorithms and their lifecycle management, including

deployment, execution, orchestration, and more. Works like [13] explore challenges related to the

orchestration of quantum services, which is crucial in this context.

Moreover, alongside the development, execution, and orchestration of quantum services, it is es-

sential not to overlook other aspects of quality service engineering [3]. This includes aspects related

3



Figure 1: Continuous Deployment for Quantum Software

to the quality assurance and testing of quantum services, as well as the security of quantum services.

These considerations play a vital role in ensuring the reliability, efficiency, and safety of quantum

software systems.

3.2 Development and Deployment for Quantum Software

DevOps is a software development methodology that focuses on the integration and synchronization

of development and operations teams, with the goal of optimizing the software delivery process. It

emphasizes collaboration, automation, and effective communication to improve the speed, quality,

and reliability of software deployment.

In the context of quantum software development, DevOps plays a crucial role in addressing the

unique challenges posed by quantum computing.

Continuous Integration (CI) and Continuous Deployment (CD) are essential practices in the De-

vOps methodology that aim to automate the software delivery process. CI involves integrating code

changes into a shared repository, while CD focuses on automating the deployment of software up-

dates to the production environment as soon as they are ready. Efforts are being made to automate

these processes using available commercial tools.

For all these reasons, we propose the continuous deployment architecture shown in Figure 1. The

first step is to define the business logic of the service as a quantum circuit using Open Quirk (indicat-

ing the Open Quirk URL of the created circuit) or directly indicating a URL where the source code is

in Qiskit language (obtained from the IBM Quantum Composer).

To integrate the business logic of quantum services, we utilize a graphical quantum programming

tool that enables drag-and-drop operations for building quantum circuits. One such tool is Open

Quirk, a quantum circuit composer developed using the JavaScript programming language. Open

Quirk is an open-source software solution designed to facilitate the rapid prototyping of quantum

circuits. It’s important to note that while Open Quirk is the suggested quantum circuit composer, it

can be easily substituted with other tools that offer similar capabilities for quantum circuit creation.

The key requirement is that the chosen tool should allow programmatic access to the circuit code,

enabling seamless integration with the OpenAPI Specification for the quantum service.

In the second step, the quantum API is defined by establishing an API contract using the OpenAPI

Specification. This contract consists of defining multiple endpoints that correspond to different API

methods, with each endpoint having its own specific business logic. To link the defined quantum

circuit with a particular endpoint that will access its corresponding business logic, it is necessary to

include either the Open Quirk URL of the circuit or the URL where the Qiskit code is located in the

4



YAML specification of the API. The API definition is a YAML file that follows the standard structure

of the OpenAPI Specification. This file provides comprehensive information about the API, including

general details, available endpoints, paths, and the supported operations for each path.

To facilitate Continuous Deployment, a pipeline has been developed to automate the code gener-

ation and deployment process, ensuring that the code is readily available for consumption by users.

This pipeline leverages GitHub Actions, a popular tool provided by GitHub for code management.

GitHub Actions enables developers to define actions that need to be performed whenever a change

is detected in the repository.

The pipeline, powered by GitHub Actions, further automates the process by generating the code

for the quantum services. The manual process of the developers ends with a commit to the repository,

and the process of automatic generation and deployment of the services begins (step 3). In this step,

the specification in the repository is validated to ensure proper formatting. The modified version of

the OpenAPI Code Generator is employed to generate the code for the services (Steps 4 and 5). If

the code is generated successfully, the subsequent task involves deploying the services in a container

(Step 6). To achieve this, a request is sent to the Deployment API hosted on the AWS server. This

request includes the URL pointing to the YAML file containing the specification and the necessary

credentials to configure the execution on the service providers. The Deployment API then handles

the deployment process, ensuring that the quantum services are made available for consumption.

By automating these steps, developers are relieved from the manual tasks of code generation and

deployment. The pipeline, powered by GitHub Actions and integrated with the Deployment API,

streamlines the process and enables efficient deployment of the quantum services in containers.

The server receives the call from the GitHub Actions generates and encapsulates the code in a

container (step 7) and deploys it by exposing it on the first free port (step 8) at EC2 service. Once it is

ready, it returns the URL where the generated services are hosted.

4 Conclusion

In conclusion, the main purpose of the work presented in this paper is to furnish a repertoire of tech-

niques and methodologies for the advancement of quantum software development, drawing inspira-

tion from the insights gleaned from classical software engineering. By leveraging the knowledge and

experiences derived from traditional software engineering practices, this endeavor aims to enhance

the efficacy and reliability of quantum software construction. By employing established methodolo-

gies, such as requirements analysis, design patterns, and testing strategies, this paper seeks to bridge

the gap between classical and quantum software engineering, facilitating the creation of robust and

dependable quantum software solutions.

Acknowledgement

This work has been partially funded by MCIN/AEI/10.13039/501100011033 and by the EU “Next Gen-

erationEU /PRTR”, by the Ministry of Science, Innovation and Universities (PID2021-1240454OB-

C31,TED2021-130913B-I00,PDC2022-133465-I00). It is also supported by the QSALUD project (EXP

00135977/MIG-20201059) in the lines of action of the CDTI; by the Ministry of Economic Affairs and

Digital Transformation of the Spanish Government through the Quantum ENIA - Quantum Spain

project; by the EU through the Recovery, Transformation, and Resilience Plan – NextGenerationEU

5



within the framework of the Digital Spain 2025 Agenda; by the Regional Ministry of Economy, Sci-

ence and Digital Agenda (GR21133); and by the Academy of Finland (Project DEQSE 349945) and

Business Finland (Project TORQS 8582/31/2022).

References

[1] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. Na-

ture 2019 574:7779, 574:505–510, 10 2019.

[2] Mario Piattini et al. The talavera manifesto for quantum software engineering and programming

m2i formación ramsés gallego quantum world association, 2020.

[3] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan, Jinfeng Shen,

and Muhammad Ali Babar. Understanding and addressing quality attributes of microservices

architecture: A systematic literature review. Information and Software Technology, 131:106449,

2021.

[4] Dmitri Maslov, Yunseong Nam, and Jungsang Kim. An outlook for quantum computing [point

of view]. Proceedings of the IEEE, 107(1):5–10, 2019.

[5] Enrique Moguel, Javier Berrocal, Jose García-Alonso, and Juan Manuel Murillo. A roadmap for

quantum software engineering: applying the lessons learned from the classics. 2020.

[6] Enrique Moguel, Javier Rojo, David Valencia, Javier Berrocal, Jose Garcia-Alonso, and Juan M.

Murillo. Quantum service-oriented computing: current landscape and challenges. Software

Quality Journal, 30(4):983 – 1002, 2022. Cited by: 5; All Open Access, Green Open Access, Hybrid

Gold Open Access.

[7] Leonie Mueck. Quantum software. Nature, 549:171, 9 2017.

[8] Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions. Pro-

ceedings - 4th International Conference on Web Information Systems Engineering, WISE 2003,

pages 3–12, 2003.

[9] Mario Piattini, Guido Peterssen, and Ricardo Pérez-Castillo. Quantum computing: A new soft-

ware engineering golden age. SIGSOFT Softw. Eng. Notes, 45(3):12–14, jul 2020.

[10] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 8 2018.

[11] Ricardo Pérez-Castillo, Manuel A. Serrano, and Mario Piattini. Software modernization to em-

brace quantum technology. Advances in Engineering Software, 151:102933, 1 2021.

[12] Mijanur Rahaman and Md. Masudul Islam. A review on progress and problems of quantum com-

puting as a service (qcaas) in the perspective of cloud computing. Global journal of computer

science and technology, 15, 2015.

[13] Karoline Wild, Uwe Breitenbucher, Lukas Harzenetter, Frank Leymann, Daniel Vietz, and

Michael Zimmermann. Tosca4qc: Two modeling styles for tosca to automate the deployment

and orchestration of quantum applications. Proceedings - 2020 IEEE 24th International Enter-

prise Distributed Object Computing Conference, EDOC 2020, pages 125–134, 10 2020.

[14] Jianjun Zhao. Quantum software engineering: Landscapes and horizons. 7 2020.

6


	Introduction
	Background
	Proposal for a quantum service-oriented architecture
	Quantum Service Engineering
	Development and Deployment for Quantum Software

	Conclusion

