
Microservices Community 2023 International Conference on Microservices

A Unifying, Lightweight Platform for
Microservice and Serverless Deployments

Saverio Giallorenzo1,2 · Claudio Guidi3 · Luca Tagliavini1

1 Alma Mater Studiorum - Università di Bologna, Bologna, Italy
2 INRIA, Sophia-Antipolis, France 3 italianaSoftware s.r.l., Imola, Italy

B luca.tagliavini5@studio.unibo.it

1 Introduction

The two complementary software architectural styles of microservices [5] and serverless functions

(FaaS) [8] represent the state-of-the-art in cloud architectures. In both styles, developers break down

the components of a cloud application into small software units. A microservice implements a cohe-

sive set of operations, while a function handles a single operation. Both microservices and functions

can be efficiently replicated/scaled. In the case of microservices, existing methods [10, 6, 11, 3, 4, 2, 1]

determine a threshold, such as performance or traffic, which when exceeded, leads to the replication

or deduplication of microservice instances. Since, in microservices, a process is constantly available

to handle new requests, this style achieves small per-invocation costs when the traffic is steady (given

an allocation of resources proportional to the traffic). However, when there are no inbound requests,

microservices are “idle”, wasting money and resources. Upscaling and downscaling policies address

issues related to traffic fluctuation, but they complicate the deployment logic of the application. FaaS

scales based on the number of inbound requests [7] since each new call triggers the allocation of an

instance of the specific function on a cloud node. Hence, the one-request-one-allocation approach of

FaaS makes scaling implicit and automatically determined by the amount of inbound traffic—so that,

when there are no requests, no functions are running, and no resources are wasted for their execution.

Unfortunately, current cost models oppose steady-traffic configurations, exacting a disproportionate

price w.r.t. their microservice counterparts.

It is difficult to predict what kind of traffic a given architecture will endure—and it is likely to

sustain different traffic shapes during its lifecycle phases, if not at different times of the same day.

Nevertheless, developers need to commit early on which style to use when they start developing their

system (and adapting a system developed in either style to the other can be a costly decision).

In this abstract, we present JFN, a platform that supports the deployment of microservices as

serverless functions (with minimal adjustments, e.g., we ask the developer to indicate which of the

operations of the microservice the function exposes) as well as the execution of functions as microser-

vices under certain conditions (e.g., when receiving a steady stream of requests within a given time-

frame). To tackle the objective of JFN, we leverage the linguistic constructs of the service-oriented

language Jolie. In Section 2, we provide the essential details on the architecture of JFN to support the

hybrid execution of microservices and serverless functions. In Section 3, we overview related work

close to JFN and consider future evolutions of the platform. JFN is an open-source project available

at https://github.com/lucat1/jfn.

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

https://github.com/lucat1/jfn


2 The Architecture of JFN

JFN implements a lightweight serverless runtime, supporting both the function and microservice ex-

ecution modalities. The main components of the JFN architecture are four.

The Gateway receives operation calls and redirects them to the appropriate Executor, which will

consume the request either executing the associated function or passing it to the running microser-

vice. The Gateway, interacting with the Provisioner, also acts as a load balancer among the Executors.

The Provisioner takes care of scaling the number of Executors and determines the routing for each

function call, performing the actual distribution of the load. This component also handles the FaaS-

microservice adaptation logic; it monitors the number of calls per-function and per-executor, nec-

essary to determine when a function should be converted to a microservice. Once adapted to the

microservice execution modality, the Provisioner gives priority to a microservice instance.

JFN considers two kinds of Executors: a Runner and a Singleton. The Runner uses the embed feature

of the Jolie language to perform a FaaS-like, one-shot run of a microservice, invoking the operation

selected by the developer at deployment time. On the contrary, a Singleton works as a wrapper for

the aforementioned microservice, loading and executing it in continuous execution mode. To help

illustrate the components of the architecture and explain the difference between the two runners, we

depict a schema of JFN’s architecture in Figure 1. There, the Runners r1 and r2 contain multiple run-

ning functions (the thread-like icons within the Runner’s shapes). Contrarily, j1 and k1 are Singleton

microservice-mode instances of the related functions.

 

Figure 1: JFN architecture and invocation flow of two func-

tion calls: one computed as a function a(p), one redirected

to its microservice j(p).

The last main component is the

Function Catalog, which stores the

code for functions and allows devel-

opers to deploy new ones on and re-

move existing ones from the platform.

As mentioned, the distinguishing

feature of JFN is its ability to dynam-

ically convert the execution modal-

ity of a function into a microservice,

which offers better cost/performance

when dealing with steady loads. This

flexibility is supported by the fact that

each function in JFN is a Jolie service,

so it can be directly executed, with

some minor adjustments. Notably, in

section 2, we find the gray area en-

compassing all the platform’s compo-

nents and running functions tagged

as “Docker node”. This annotation showcases a possible installation of the JFN architecture, which

uses Docker to containerise the architecture and simplify the deployment of the platform.

Invocation protocols. To conclude our overview of JFN, we briefly present the invocation protocols

followed by the platform. In Figure 1, we show all the components of the JFN architecture, and exem-

plify their interaction focusing on the execution of two functions. In the figure, we represent Runners

as blue boxes, functions as red hexagons, users as laptops, and invocation requests as sheets.

The first function is a, whose invocation is requested with parameter p and represented in the

2



figure as a(p). The invocation is executed by the Runner r1 in function mode. The second request,

j(p), is handed to the dedicated j1 Singleton service. A function may be executed by any Runner, but,

with sufficient load, it can also have multiple dedicated Executors. This whole process is transparent

to the users, who see both a(p) and j(p) as two invocations to the Gateway.

When a function invocation request is sent to the Gateway, it asks the Provisioner which Executor

should execute it. Then, the request is relayed to the designated Runner or Singleton. While a Sin-

gleton will immediately perform the computation, a Runner may need to fetch the function’s code

from the Catalog, then embed it—using the namesake linguistic construct/runtime provided by the

Jolie language—and finally execute it. After the execution of a function on a Runner, the function is

unloaded, while its code is temporarily cached for possible subsequent invocations.

Within a given timeframe (e.g., every minute), the Provisioner evaluates whether to allocate one

or more Singletons for a function, based on the number of calls received in the past timeframe. At

startup, a Singleton fetches the function’s code from the Catalog and embeds it permanently, config-

uring a redirection so that the embedded function service can be reached.

3 Discussion and Conclusion

As far as we know, there is only one proposal similar to JFN, by Li et al. [9]. Specifically, the platform

by Li et al. solves the problem of reconciling serverless- and microservice-style executions by running

a given microservice in “serverless mode”, executing it when new requests arrive until it fulfilled those

invocations. We see the approach by Li et al. as complementary to ours. Indeed, JFN takes a function-

first stance (allowing developers to deploy microservices as functions if needed) and then automates

the microservice-style deployment according to the experienced traffic shape. Performance-wise, we

hypothesize that the platform by Li et al. could suffer from inefficiencies e.g., due to the unnecessary

allocation of resources for a whole microservice (which usually encompasses multiple operations,

each with its code, dependencies, and potential connections to other resources such as databases

and dependent microservices; resulting in possible chains of allocations).

Regarding future work, we envision working on distributing the JFN platform across multiple clus-

ters, which would enhance its scalability and robustness, so that, by leveraging the capabilities of dis-

tributed systems, we can ensure efficient resource usage and handle increased workloads effectively.

Another area is the improvement of scaling policies. These policies play a crucial role in dynami-

cally adapting the system to varying demands. We aim to enhance the existing policies and develop

new ones that not only consider factors such as request frequency and resource availability but also

take into account the characteristics of the functions/microservices themselves. This includes deter-

mining the optimal conditions under which a function should be executed in service mode, consid-

ering additional factors like data dependencies and performance requirements.

While our main focus regards the definition and implementation of the JFN architecture, we also

plan to provide developer support when adapting an existing microservice into a function. We deem

the choice to use Jolie on point. Indeed, the language provides explicit, idiomatic ways to express

intra-session coordination within a microservice’s code (e.g., accessing the global state of the mi-

croservice). This linguistic support expedites the implementation of programming aids such as lin-

ters and code analysers able to indicate when it is feasible to deploy a microservice as a stateless

function and provide hints about which elements of a microservice the user needs to change to make

sure that the deployed function would preserve the same behaviour when switching between the

function and microservice execution modalities.

3



References

[1] Lorenzo Bacchiani, Mario Bravetti, Maurizio Gabbrielli, Saverio Giallorenzo, Gianluigi Zavattaro,

and Stefano Pio Zingaro. Proactive-reactive global scaling, with analytics. In Javier Troya, Brahim

Medjahed, Mario Piattini, Lina Yao, Pablo Fernández, and Antonio Ruiz-Cortés, editors, Service-

Oriented Computing - 20th International Conference, ICSOC 2022, Seville, Spain, November 29 -

December 2, 2022, Proceedings, volume 13740 of Lecture Notes in Computer Science, pages 237–

254. Springer, 2022.

[2] Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo, et al. Microservice dynamic

architecture-level deployment orchestration. In COORDINATION 2021, LNCS. Springer, 2021.

[3] Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, et al. Optimal and automated deployment

for microservices. In FASE 2019, pages 351–368. Springer, 2019.

[4] Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, et al. A formal approach to microservice

architecture deployment. In Microservices, Science and Engineering, pages 183–208. Springer,

2020.

[5] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara, Fabrizio Mon-

tesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, today, and tomorrow. In

Present and Ulterior Software Engineering, pages 195–216. Springer, 2017.

[6] Alim Ul Gias, Giuliano Casale, and Murray Woodside. Atom: Model-driven autoscaling for mi-

croservices. In 2019 IEEE ICDCS, pages 1994–2004. IEEE, 2019.

[7] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, et al. Serverless computing: One step

forward, two steps back. In CIDR 2019. www.cidrdb.org, 2019.

[8] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan

Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. Cloud programming

simplified: A berkeley view on serverless computing. arXiv preprint arXiv:1902.03383, 2019.

[9] Zijun Li, Quan Chen, Shuai Xue, Tao Ma, Yong Yang, Zhuo Song, and Minyi Guo. Amoeba: Qos-

awareness and reduced resource usage of microservices with serverless computing. In 2020

IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 399–408. IEEE,

2020.

[10] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review of auto-scaling tech-

niques for elastic applications in cloud environments. Journal of grid computing, 12(4):559–592,

2014.

[11] Fabiana Rossi, Valeria Cardellini, and Francesco Lo Presti. Hierarchical scaling of microservices

in kubernetes. In ACSOS, pages 28–37. IEEE, 2020.

4


	Introduction
	The Architecture of JFN
	Discussion and Conclusion

