
Microservices Community 2023 International Conference on Microservices

[Micro]services: threat, challenge, or
opportunity for sound static program

analysis?
Pietro Ferrara1

1 Università Ca’ Foscari di Venezia, Italy

B pietro.ferrara@unive.it

Abstract. Microservices represent a unique opportunity to revamp sound

static analysis and its application to industrial software. However, several

formal, technical, implementation, and cultural challenges must be ad-

dressed. In this talk, we will briefly introduce static program analysis and

its application to industrial software during the last few decades, and then

we will discuss the threats, challenges, and opportunities of its application

to the microservices world.

1 Introduction

Static program analysis (SPA)[8] consists of checking properties on programs without executing them.

The approach is dual w.r.t. dynamic program analysis (e.g., testing), where the program is executed

and the property is checked on a concrete trace of execution. Over the last decades, several analyzers

have been formalized and developed. An appealing property for SPA is to be sound, that is, if the

analyzer states that the property is satisfied by the program, then all the possible executions of the

programs satisfy that. However, if SPA states that the property is not satisfied, then this might be

either a real issue or a so-called false alarm.

To make the reasoning more concrete, consider the following program:

float foo(int val) {
if (val!=0)

return 1/val ;
else return 0;

}

We want to check if this program can raise a division by zero error. If we statically reason on this

program in a sound way, we can abstract the value of variable val in many different values: with an

interval [a..b] (tracking that val must be greater or equal than a, and less or equal then b), with its

sign (e.g., tracking if it is positive, zero, or negative), or with the values it cannot assume (that is, with

a set of excluded values). With the first two abstractions, we would get a false alarm: in both cases,

the condition val!=0 does not add any knowledge to the static analysis (since val could have any value

at the beginning of the method), and therefore both analyses would raise a false alarm. Instead, the

third abstraction would track that inside the then branch val cannot be zero, therefore proving that no

execution leads to a division by zero error.

Because of the halting problem, it is not possible to compute a sound and complete approxi-

mation for any property on any program. Therefore, abstraction is needed. Abstract interpretation

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

[2, 3] is a general framework that allows one to formalize and prove the soundness of abstractions.

Other approaches, such as model checking and deductive verification via theorem proving, have been

widely applied to this field 1. Developing a sound static analyzer based on these theories requires

quite some effort, and in particular to

1. Mathematically formalize the analysis

2. Prove formally the soundness of the analysis

3. Implement the analysis of a full programming language

Because of this effort, the practical and industrial application of these techniques has been mostly

focused on specific sectors (e.g., avionics and automotive) where a single bug might have catastrophic

results. However, security application vulnerabilities have been rather appealing in this context. Mi-

croservices appear to be yet another environment where sound SPA might play a relevant role, given

the pervasiveness of their adoption. In this paper, we discuss what threats, challenges, and opportu-

nities microservices arise to sound SPA.

2 Sound SPA in industry

First of all, we start by analyzing what industrial impact sound SPA had in the last few decades.

Since the 90s, several sound analyzers have been applied in the industry. An initial main focus

was on safety-critical software, such as automobile or aerospace software. In such a context, a single

bug (and in particular, run-time error) might lead to catastrophic effects such as the loss of human

lives. Therefore, achieving a run-time error-free software was a main concern, several standards of

those fields imposed them, and several sound static analyzers, such as ASTREE [4] and Mathworks

Polyspace [9] were commercialized. Several industrial standards and certifications (such as DO-178C

for the avionic software certification[7]) impose the adoption of formal methods to prove the absence

of bugs.

Unfortunately, sound static program analysis has found little industrial impact on the applica-

tion, Web, mobile, and cloud software since the 2000s, even if some notable examples exist (such

as the Julia static analyzer [10]). In such a context, the presence of a bug is not perceived as such a

big deal, since a run-time error would cause at most the crash of a computer system, but it would

not kill people or have effects on the physical world. In addition, the variety of programming lan-

guages, frameworks, and libraries adopted in this context poses a hard challenge to sound SPA: each

programming language requires a new analyzer, the run-time behavior of each framework requires

manually specifying and implementing it, and libraries often require to manually synthesize their

behavior (otherwise the analysis would easily need to deal with 100KLOCs if not MLOCs, and it is

particularly challenging to scale at this level).

However, things changed over time: cybersecurity threats and the identification of software vul-

nerabilities (such as various forms of injections and cross-site scripting) combined with a wider and

wider application of those programs (that moved from a purely desktop-based world to a Web/cloud

world where more and more critical services, such as e-banking, are provided) pushed again the need

of proving the absence of bugs (or software vulnerabilities).

1If on the one hand, the purpose of this talk is not to give an overview of SPA techniques, on the other hand, we will be

available to discuss in details those techniques if it will be of interest for the audience

2

For instance, among the thousands of bugs and vulnerabilities classified by CVE every year2, the

Equifax data breach3 in 2017 is one of the most famous. This breach, caused by a vulnerability in

Apache Struts, caused the leak of sensitive information of about 150 million US citizens, and losses in

the order of hundreds of millions of dollars to the enterprises. Over the years, many other vulnerabil-

ities caused high economic damage to enterprises once exploited by hackers.

Because of this situation, nowadays more and more tools based on formal methods (for instance,

the aforementioned Julia[10], Zoncolan and Infer at Meta[6]) are appearing on the market and they

are adopted by industries.

3 Microservices and sound SPA

The advent of first service-based applications, and then microservices and serverless architectures,

changed the scenario again. From a static analysis standpoint, we oversimplify all those architectures

as software composed of many independent units (where each unit can be deployed separately) that

communicate (synchronously or asynchronously) exchanging objects. In addition, those units are

micro (aka, fine-grained or minimal) in the sense that they deal with only one specific aspect (aka,

domain) of the overall application.

While such a definition is rather naive (they might communicate through REST APIs or message

brokers, they might exchange information through JSON, XML, or binary format, etc...), it already

comprises all the things that matter from a static analysis standpoint. From now on we will improp-

erly refer to these architectures as microservices, but we want to underline that such a term encom-

passes a larger software base for our purposes.

3.1 The threats

Each microservice implements a small part of the system, and how different microservices commu-

nicate is hard to infer statically since it might depend on external configuration files, dynamic com-

putation of string values (URLs or names of topics), etc. In addition, each microservice could be

implemented in any available technological stack, and the same system might encompass different

technological stacks. The most popular technological stacks rely on JavaScript (such as MEAN4 and

MERN5), Python (such as FastAPI6 and Flask7), or Java (such as Spring8). Other dozens of less popular

technological stacks are nowadays applied at an industrial scale.

3.2 The challenges

Each threat is also a challenge. Abstract interpretation is believed to be a theory so generic that it can

be applied to any form of abstraction[5], and therefore to any programming language or technological

stack. We are ready to defend this idea with very strong arguments against any possible objections.

However, generality comes to a price, as we underline at the end of Section 1. The main challenge will

2https://cve.mitre.org/
3https://en.wikipedia.org/wiki/2017_Equifax_data_breach
4https://meanjs.org/
5https://mern.js.org/
6https://fastapi.tiangolo.com/
7https://flask.palletsprojects.com/
8https://spring.io/

3

https://cve.mitre.org/
https://en.wikipedia.org/wiki/2017_Equifax_data_breach
https://meanjs.org/
https://mern.js.org/
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/
https://spring.io/

be to deal with all those threats on the existing variety of technological stacks. On the other hand, the

minimal size of microservices (in terms of implemented functionalities, and therefore lines of code)

opens the door to the application of extremely precise sound SPA. Precise and sound SPAs usually do

not scale up to software above 10KLOCs9.

In addition, we believe that the current dichotomy between the research field of static analysis and

the one of (empirical) software engineering/architecture poses a further challenge. It seems that over

the last 20 years, the first community mostly focused on theoretical studies with prototype imple-

mentations, while the second one mostly focused on strong and (almost) industrial implementations

with very little (if any) formalization. This led to a scientific environment where the researchers in

static analysis tags as not scientific the user study with few dozens of participants published by soft-

ware engineering researchers, and the latter researchers that tag as Greek feta10 the formalization of

the first community, stating that they are useless and not understandable. Making these two worlds

communicate again is quite challenging, and it is the main reason for this talk.

3.3 The opportunities

Microservices are nowadays pervasive. With the IoT revolution, the dichotomy between safety critical

systems and cloud software went away, since nowadays a lot of those systems (such as cars, airplanes,

and industrial plants) are connected to the Internet and communicate with microservices[1]. We

believe this is a huge opportunity for sound static program analysis to target: it is nowadays pretty

clear that such an environment will need deep debugging methods, and only sound SPA can prove

the absence of bugs. However, the challenges to solve are huge, and there will be a lot of effort (in

terms of people involved in projects, funding, and conceptual work) to fill the gap.

4 Conclusion

In this paper, we briefly introduced sound static program analysis (SPA), illustrating its main indus-

trial applications over the last decades, and then we illustrated what threats, challenges, and oppor-

tunities microservices arise for sound SPA. We believe that the state-of-the-art of the different tech-

nologies and scientific communities suggests the following takeout messages:

1. Sound static program analysis has been experiencing little industrial interest during the last 2

decades

2. Microservices will probably be an extremely appealing environment to flourish again sound

SPA, but the challenges to solve are huge!

3. These challenges need the collaboration of the scientific communities in sound SPA and soft-

ware engineering

As already underlined in the introduction, the main advantage of sound SPA w.r.t. other tech-

niques such as testing and syntactic SPA is that it can approximate all possible executions. This is

9Notable exceptions such as ASTREE[4] exist. However, they often target a specific codebase and they have been optimized
to scale up on such software

10We take this term by a colleague that recently gave us this illumination, but he/she also said that this was not his invention
and the copyright it belongs to somebody else. Therefore, we prefer to keep anonymous. If anybody wants to publicly state that

this was his invention, we would be more than happy to cite him. Otherwise, we can further push this idea, since we believe it
perfectly summarizes the current status of our research fields

4

fundamental to proving the absence of bugs or software vulnerabilities. We believe that this might be

the key feature for the potentially wide adoption of sound SPA to microservices for two main reasons:

• microservices offer more and more critical services that must comply with high privacy and

security standards, and

• software vulnerabilities are usually exposed only by specific input and configurations.

Therefore, tools proving the absence of bugs might be particularly appealing even if they raise false

alarms that need to be manually investigated and discarded.

Acknowledgments: This work was partially supported by project SERICS (PE00000014) under the

MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU,

project iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Invest-

ment 1.5) NextGeneration EU – Project ID: ECS 00000043, and project SPIN-2021 “Static Analysis for

Data Scientists” funded by Ca’ Foscari University.

References

[1] Björn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices approach for the internet

of things. In Proceedings of ETFA ’16’. IEEE, 2016.

[2] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In Proceedings of POPL ’77. ACM,

1977.

[3] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proceedings of

the 6th Symposium on Principles of Programming Languages (POPL), pages 269–282. ACM, 1979.

[4] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE

analyzer. In Proceedings of ESOP ’05. Springer-Verlag, 2005.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present and future. In

Thomas A. Henzinger and Dale Miller, editors, Proceedings of LICS ’14. ACM, 2014.

[6] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling static

analyses at facebook. Commun. ACM, 62(8):62–70, 2019.

[7] Gabriella Gigante and Domenico Pascarella. Formal methods in avionic software certification:

the do-178c perspective. In International Symposium On Leveraging Applications of Formal

Methods, Verification and Validation. Springer, 2012.

[8] Anders Møller and Michael I Schwartzbach. Static program analysis. https://users-

cs.au.dk/amoeller/spa/spa.pdf, 2023.

[9] Mathworks Polyspace. https://www.mathworks.com/products/polyspace.html.

[10] Fausto Spoto. The julia static analyzer for java. In Proceedings of SAS ’16. Springer, 2016.

5

	Introduction
	Sound SPA in industry
	Microservices and sound SPA
	The threats
	The challenges
	The opportunities

	Conclusion

