
Microservices Community 2023 International Conference on Microservices

A practical experience report on moving
from VM to Kubernetes in an academic

research group
Sebastian Copei1

1 Kassel University, Kassel, Germany

B sco@uni-kassel.de

Abstract. Using Kubernetes in a productive environment increases the

complexity of the needed software stack. Without further maintenance of

the software infrastructure, technical debts can quickly arise. With this ex-

perience report, we want to outline our migration from classic VMs over

Docker to a Kubernetes infrastructure for both providing software for our re-

search projects and also for productive software. Despite all the challenges

and barriers, the benefits after a successful migration, such as fast and easy

CI/CD or the rollout of any service, are worth it.

1 Introduction

The constant transition from traditional deployment scenarios with plain virtual machines to dis-

tributed cloud systems with Kubernetes is omnipresent. Companies like Netflix, Spotify and Amazon

are using cloud technologies at a large scale. Besides these large-scale applications, the usage of Ku-

bernetes in a smaller environment is also associated with benefits [1, 10]. For a long time, in our

research group, we deployed our software on a virtual machine hosting Ubuntu Server. For the de-

ployment we used Jenkins and as an application server Tomcat [4]. As most of the software we were

serving was written in Java, that stack was sufficient. Also in our teaching, we focused on the devel-

opment of Java-based software or tools which runs in the Eclipse ecosystem like EMF1. However, the

trend shows a migration from desktop application to web application (Software as a Service (SaaS)).

Further, the students reached out at us to provide more web and cloud technologies in our teaching.

This was not limited to our lectures, also the students wants to do more projects and theses within

the cloud subject area. With this in mind, We decided to shift our teaching from classical desktop de-

velopment to more modern approaches of web technologies. This also implies a change of the used

programming language. While Java with Spring Boot2 doubtless is a reliable choice for the imple-

mentation of backends, most modern frameworks require at least JavaScript for the frontend. To not

lose the type system known from Java, we decided to use TypeScript instead of JavaScript. In addi-

tion, we utilize TypeScript in conjunction with NestJS3 for backend implementation. The upcoming

technology Docker was a perfect fit. With rising complexity of our applications, databases, proxies,

microservices etc., we first used Docker Compose to manage applications in stacks. However, due to

the lack of overview for all our services, we moved on to Rancher4 as a management service for our

1https://projects.eclipse.org/projects/modeling.emf.emf
2https://spring.io/projects/spring-boot
3https://nestjs.com/
4https://www.rancher.com/

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

https://projects.eclipse.org/projects/modeling.emf.emf
https://spring.io/projects/spring-boot
https://nestjs.com/
https://www.rancher.com/


cluster. In this report, the author provides a brief introduction to our migration process from a virtual

machine to a Kubernetes cluster. In particular, we want to show that Kubernetes is also a good choice

for smaller deployment scenarios, despite its higher system complexity. In section 2, we will present

the relevant requirements that needed to be considered during the migration process, as well as our

general setting. After that, in section 3, the used technology stacks will be presented. Section 4 will

highlight barriers and challenges during the migration process and section 5 focuses on the discus-

sion, evaluation, and assessment of the migration process, as well as the acceptance of the new cloud

environment. Finally, section 6 will give a summary and outlook.

2 Setting and Requirements

The establishment of an efficient IT environment is a fundamental requirement for our workgroup,

enabling us to deliver and manage various applications like GitLab 5 or ownCloud6 (later Nextcloud7).

Beyond the essential infrastructure, the implementation of additional services becomes crucial to

streamline interaction with students. Moreover, it is mandatory to ensure the availability of an envi-

ronment capable of executing software associated with research projects and facilitating the research

work conducted by our scientists. Furthermore, the infrastructure should support the seamless op-

eration of services utilized in our teaching activities. This comprehensive IT environment will serve

as a foundation for enhancing productivity, promoting collaboration, and accommodating diverse

requirements within our workgroup. As described in the last section, we initially fulfilled this with

virtual machines and hosted a GitLab server, where students could host their code, Tomcat as an ap-

plication server, to host our Java applications that were produced during research projects or other

research activities, and Jenkins as a tool for automated CI/CD pipelines. From this setting, we defined

the following requirements which needed to be fulfilled by a new infrastructure after migration.

R1: All data has to be stored physically on devices inside of the University. As we are running soft-

ware which is used by our university’s administration, it is not permitted to save the data on servers

which are provided by a hyperscaler like AWS.

R2: Applications and services need to be easily configurable. Each service is configurable through

environment variables. There should be an understandable and readable way to manage and change

these variables.

R2.1: Also students should be able to use the configuration tools. The used configuration tool

should be user-friendly enough that even students can configure and deploy projects they develop

during their studies.

R3: The infrastructure should be production-ready. As already described in R1, we host appli-

cations which are production-ready. After a migration, all used tools and software need to remain

production-ready.

5https://docs.gitlab.com/ee/install/
6https://owncloud.com/de/
7https://nextcloud.com/de/

2

https://docs.gitlab.com/ee/install/
https://owncloud.com/de/
https://nextcloud.com/de/


All in all, after the migration to Kubernetes, we were able to fulfill the defined requirements. The

infrastructure after the migration will be introduced in the next section.

3 Used technology stack

We split the full migration path into smaller parts. We took the first step by migrating to Docker

and simplifying the organization of applications with Docker Compose. Containers that require per-

sistent storage use host binding to achieve this. Additionally, we copied the folders from the host

binding to a network-attached storage (NAS) for backups. We installed nginx8 as a proxy and for SSL

termination. Our IT service center issued the SSL certificate. As we deployed more and more appli-

cations, we had to use a UI for easier administration. Consequently, we performed the subsequent

step by migrating to an appropriate platform and choosing Rancher9 as the option. By introducing

Rancher, we replaced the previously used ngxin proxy with the integrated HAProxy 10 within Rancher.

This transition included replacing the SSL certificate and using Let’s Encrypt11 for issuing certificates.

In the final migration step, we moved from Docker to Kubernetes. In order to ensure high availabil-

ity (HA) of the cluster, we implemented the recommended infrastructure as suggested by Rancher

Labs [8, 9, 5, 6, 7]. Following Rancher Labs’ recommendations, we established two distinct clusters.

The initial cluster comprises three nodes for the Kubernetes cluster, with Rancher configured in a HA

setup [6]. Additionally, a separate node is dedicated to serving as a nginx layer 4 load balancer [8, 7].

The second cluster, referred to as the downstream cluster [8], consists of two control plane nodes [3],

three etcd nodes [3], two worker nodes [3], and an additional separate node serving as a nginx layer

4 load balancer [9, 5]. In this new setup, SSL termination is no longer performed by the nginx load

balancers. Instead, the ingress controller12 utilizes a certificate provided by cert-manager13 and is-

sued by Let’s Encrypt. With the migration to Kubernetes, the transfer of persistent data to Kubernetes

volumes14 becomes necessary. However, in a HA setup, the specific node on which a container will be

deployed is unknown. To ensure that the volumes remain consistently available on all worker nodes,

we employed Longhorn15 for data replication. Longhorn also handles the backups, which are fur-

ther saved onto our NAS. For the monitoring of the nodes inside the downstream cluster, we used the

recommended monitoring stack from Rancher Labs16, which consists of Prometheus17 for data col-

lection and Grafana18 for visualization. Lastly, we deployed a Keycloak19 server for centralized user

management and a Registry20 to store our Docker images. From this point onwards, we transferred

all our applications and projects to the downstream cluster. In addition to migrating the cluster, we

transitioned from using a self-hosted GitLab to utilizing GitHub21 and GitHub Classroom22 for stu-

8https://www.nginx.com/
9https://rancher.com/docs/rancher/v1.6/en/

10https://rancher.com/docs/rancher/v1.6/en/cattle/adding-load-balancers/#adding-a-load-balancer-in-the-ui
11https://letsencrypt.org/de/
12https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
13https://cert-manager.io/
14https://kubernetes.io/docs/concepts/storage/volumes/
15https://longhorn.io/
16https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/

enable-monitoring
17https://prometheus.io/
18https://grafana.com/
19https://www.keycloak.org/
20https://docs.docker.com/registry/
21https://github.com
22https://classroom.github.com/

3

https://www.nginx.com/
https://rancher.com/docs/rancher/v1.6/en/
https://rancher.com/docs/rancher/v1.6/en/cattle/adding-load-balancers/##adding-a-load-balancer-in-the-ui
https://letsencrypt.org/de/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://cert-manager.io/
https://kubernetes.io/docs/concepts/storage/volumes/
https://longhorn.io/
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/enable-monitoring
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/enable-monitoring
https://prometheus.io/
https://grafana.com/
https://www.keycloak.org/
https://docs.docker.com/registry/
https://github.com
https://classroom.github.com/


dent interaction and code project storage. In section 5, these applications will be described in detail.

4 Barriers and challenges

To fulfill requirement R3, we were forced to use Kubernetes in a high-availability setting. For this,

Kubernetes requires a lot more server resources than a simple infrastructure with Docker and Docker

Compose. At this point, we were facing our first barrier. Our target infrastructure contains 11 servers

and two load balancers. Following requirement R1, all data has to be stored in our in-house datacen-

ter, but there was not enough space for more hardware. The first attempt to solve this issue was to

request multiple virtual machines at our IT service center. Unfortunately, they do not have the capac-

ity for further hardware or virtual machines either. Because of missing knowledge, a direct hosting of

a Kubernetes cluster also was not possible. The actual solution was to run the management com-

ponents of Kubernetes at a cloud provider and the worker nodes in our in-house datacenter. With

this setup, we are able to meet requirement R3 without violating R1. To meet requirements R2 and

R2.1 we decided to use Rancher as a cluster manager. Rancher is supposed to manage hundreds of

clusters. The user interface (UI) has an integration for monitoring systems and provides with the

catalog23 an easy possibility to install certified helm charts. Also, unlike the default Kubernetes dash-

board, Rancher has the capability to deploy applications and services through its UI. With this feature,

requirement R2.1 is fully satisfied. The main challenge of the migration process was the steep learn-

ing curve. This challenge can also be interpreted as a barrier. Currently, the author is the person who

did the migration and built the infrastructure as it is. Due to the high complexity of the infrastructure

(see section 3) and the steep learning curve, it is challenging to transfer the knowledge to another per-

son who can effectively administer the cluster. In addition to administering the cluster, the person

must also monitor its health and be capable of executing disaster recovery procedures in the event

of major failures, such as a network outage. We were able to partly solve this challenge, the author

served a lecture in our master computer science program and teaches current DevOps technologies,

which also includes the creation and administration of Kubernetes clusters with Rancher.

5 Analysis

The applications we are running in our cluster can be grouped into the following categories.

1. Teaching

2. Student projects

3. Research projects

4. Real world projects

Teaching Student numbers naturally fluctuate, posing challenges to effectively responding to in-

creased volumes without Kubernetes. However, Kubernetes’ horizontal pod autoscaler24 simplifies

scaling, provided that the services being scaled are compatible with it [2]. In concrete terms, we pro-

vide a service system for a software engineering course in the bachelor’s program, where the students

23https://ranchermanager.docs.rancher.com/pages-for-subheaders/helm-charts-in-rancher
24https://kubernetes.io/de/docs/tasks/run-application/horizontal-pod-autoscale/

4

https://ranchermanager.docs.rancher.com/pages-for-subheaders/helm-charts-in-rancher
https://kubernetes.io/de/docs/tasks/run-application/horizontal-pod-autoscale/


need to implement the client to the server in teams. In the master’s program, we simulate an indus-

trial network for an Internet of Things (IoT) course. The students have to implement several simple

services and deploy them inside the network, and the services have to cooperate.

Student projects With Rancher’s user-friendly UI and integrated role-based user management, stu-

dents have the ability to host their projects, which are required for their studies. Consequently, by

only needing to familiarize themselves with writing a Dockerfile and utilizing CI/CD with GitHub Ac-

tions25, students can allocate more time to focus on their projects rather than having to learn the

intricacies of our cluster’s entire stack.

Research projects The primary advantage of our research project is the increased visibility of our

results. For instance, we have developed Fulib26, a model generation tool for Java applications, as

a further development of Fujaba27. By providing an online playground, individuals can experiment

with or directly utilize the tool without the need for installation.

Real world projects We have developed during several student projects or with the work of our

student assistant software which is used productively. The biggest example is a research newsletter28

with round about 8000 user. With the capability abilities of the cluster, we can react fast and reliable

onto traffic peaks.

Furthermore, for all our projects and applications, we establish multiple environments for develop-

ment, staging, and production builds. Moreover, by utilizing GitHub Actions, we have created a uni-

fied CI/CD pipeline that can be reused. Although the initial complexity of the system is notably high,

and the learning curve is steep, utilizing the cluster through Rancher significantly reduces complexity

and lowers barriers for employing web technologies.

6 Conclusions

With this report, we outline our transition from virtual machines to a Kubernetes cluster, highlighting

the barriers and challenges we encountered. Despite the steep learning curve and initial obstacles

during the cluster setup, the reduced complexity of application deployment offers significant time

savings that can be directed towards other engaging endeavors. Looking ahead, our aim is to adopt

GitOps for our CI/CD pipeline, thereby diminishing configuration overhead.

7 Acknowledgement

I would like to pay my heartfelt tribute to the late Prof. Dr. Albert Zündorf, whose guidance, expertise,

and unwavering support have been invaluable throughout my research journey. His profound impact

25https://github.com/features/actions
26https://fulib.org/
27https://web.cs.upb.de/archive/fujaba/home.html
28https://www.uni-kassel.de/uni/en/forschung/research-services/research-information-services/

the-information-service-fit

5

https://github.com/features/actions
https://fulib.org/
https://web.cs.upb.de/archive/fujaba/home.html
https://www.uni-kassel.de/uni/en/forschung/research-services/research-information-services/the-information-service-fit
https://www.uni-kassel.de/uni/en/forschung/research-services/research-information-services/the-information-service-fit


and mentorship have shaped me into the researcher I am today, and I am forever grateful for his con-

tributions to my academic and personal growth. I am also thankful to Jens Kosiol for his proofreading

and input! I am deeply appreciative of his contributions to refining my research.

References

[1] DigitalOcean. Kubernetes for startups: Why, when, and how to adopt. https://www.

digitalocean.com/resources/article/kubernetes-for-startups-why-when-and-how-to-adopt,

last visited 22.06.2023.

[2] Susan J. Fowler. Production-Ready Microservices: Building Standardized Systems Across an Engi-

neering Organization. O’Reilly Media, Inc., 1st edition, 2016. https://www.oreilly.com/library/

view/production-ready-microservices/9781491965962/ch04.html, last visited 22.06.2023.

[3] Google. Kubernetes components. https://kubernetes.io/docs/concepts/overview/

components/, last visited 22.06.2023.

[4] Paul Jenkins and Jean Cassou. Jenkins. Gerd Hatje. https://www.theshagundave.com/static/

pdfs/Jenkins%20-CI%20Tool-End%20to%20End%20Platform%20Design.pdf, last visited 22.06.2023.

[5] Rancher Labs. Architecture recommendations. https://ranchermanager.docs.rancher.com/

reference-guides/rancher-manager-architecture/architecture-recommendations, last visited

22.06.2023.

[6] Rancher Labs. Checklist for production-ready clusters. https://ranchermanager.docs.rancher.

com/pages-for-subheaders/checklist-for-production-ready-clusters, last visited 22.06.2023.

[7] Rancher Labs. Recommended cluster architecture. https://ranchermanager.docs.

rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup/

checklist-for-production-ready-clusters/recommended-cluster-architecture, last visited

22.06.2023.

[8] Rancher Labs. Set up infrastructure for a high availability rke kubernetes cluster. https:

//ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/infrastructure-setup/

ha-rke1-kubernetes-cluster, last visited 22.06.2023.

[9] Rancher Labs. Setting up an nginx load balancer. https://ranchermanager.docs.rancher.

com/how-to-guides/new-user-guides/infrastructure-setup/nginx-load-balancer, last visited

22.06.2023.

[10] Vivek Sharma. Managing multi-cloud deployments on kubernetes with istio, prometheus and

grafana. In 2022 8th International Conference on Advanced Computing and Communication

Systems (ICACCS), volume 1, pages 525–529, 2022.

6

https://www.digitalocean.com/resources/article/kubernetes-for-startups-why-when-and-how-to-adopt
https://www.digitalocean.com/resources/article/kubernetes-for-startups-why-when-and-how-to-adopt
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/ch04.html
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/ch04.html
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://www.theshagundave.com/static/pdfs/Jenkins%20-CI%20Tool-End%20to%20End%20Platform%20Design.pdf
https://www.theshagundave.com/static/pdfs/Jenkins%20-CI%20Tool-End%20to%20End%20Platform%20Design.pdf
https://ranchermanager.docs.rancher.com/reference-guides/rancher-manager-architecture/architecture-recommendations
https://ranchermanager.docs.rancher.com/reference-guides/rancher-manager-architecture/architecture-recommendations
https://ranchermanager.docs.rancher.com/pages-for-subheaders/checklist-for-production-ready-clusters
https://ranchermanager.docs.rancher.com/pages-for-subheaders/checklist-for-production-ready-clusters
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup/checklist-for-production-ready-clusters/recommended-cluster-architecture
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup/checklist-for-production-ready-clusters/recommended-cluster-architecture
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup/checklist-for-production-ready-clusters/recommended-cluster-architecture
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/infrastructure-setup/ha-rke1-kubernetes-cluster
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/infrastructure-setup/ha-rke1-kubernetes-cluster
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/infrastructure-setup/ha-rke1-kubernetes-cluster
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/infrastructure-setup/nginx-load-balancer
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/infrastructure-setup/nginx-load-balancer

	Introduction
	Setting and Requirements
	Used technology stack
	Barriers and challenges
	Analysis
	Conclusions
	Acknowledgement

