
Microservices Community 2023 International Conference on Microservices

STIGs: Spatio-Temporal Graphs for
Expressing Microservice Interference
Iqra Zafar 1 · Christian M. Adriano 1 · Finn Kaiser 2 · Holger Giese 1

Hasso-Plattner Institute,University of Potsdam, Potsdam, Germany

B 1 firstname.lastname@hpi.de, 2 finn.kaiser@student.hpi.uni-potsdam.de

Abstract. Microservices have gained significant popularity as a solution for

developing large-scale applications in cloud environments, offering agility

for evolving services and scalability for satisfying surges in user requests.

However, in multi-tenant platforms, services often compete for resources,

leading to a phenomenon called interference, which can affect multiple ser-

vices and systems. Because interference propagates in complex anomaly

patterns, it can bias (confounds) the diagnostics produced by methods like

anomaly detection (AD) and root-cause analysis (RCA). Current interference

mitigation (IM ) methods are effective to measure performance loss between

competing services, but they are limited to pairs of services. Hence, these

methods do not contemplate the propagation effects through multiple ser-

vices and across systems. As a first step to address this limitation, we formal-

ize a new model (Spatio-Temporal Interference Graph - STIG) and a corre-

sponding algorithm to instantiate this model from execution trace data. We

demonstrate our approach on two publicly available microservice applica-

tion benchmarks.

1 Introduction

Microservice architectures enable agility in evolving services to contemplate new features and scal-

ability to satisfy surges in user requests [5]. However, stability of these systems can be a challenge,

because of their interconnectivity, local events can propagate as complex anomalies patterns across

and beyond a single system. For that, several methods exist for anomaly detection (AD) and root-

cause analysis (RCA)[8]. The AD methods primarily concentrate on distinguishing normal behavior

from abnormal behavior, while RCA methods aim to identify the affected services as well as the root

cause of the anomaly. This enables the identification and resolution of the anomalies, effectively

preventing their recurrence. It is important to note that addressing an anomaly does not always re-

quire making code changes and ensuring the passing of tests. Instead, fixes often involve changes

to the configuration and deployment settings [2], such as modifying resource allocation (compute,

memory, I/O) or adjusting the placement of services (clustering, containerization). Because AD is

not concerned with root-causes, the corresponding methods often rely on coarse-grained metrics

and require less information about the interdependencies among services [3]. On the other hand,

RCA methods rely more heavily on dependency models to uncover the source of the anomaly [10, 4].

Despite the similarities and differences between AD and RCA methods, their outcomes can be bi-

ased (confounded) by the phenomenon of microservice interference (definition 1). The AD and RCA

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.



methods typically focus on scenarios within a single application, where the stable call-graph depen-

dencies and the determinism of their sequential executions limit the risk of interference emerging

from resource competition. However, in multi-tenant platforms, this assumption no longer holds [9].

To address this, various interference mitigation (IM ) methods have been developed - originally, for

virtualized cloud environments [7] and, later, for microservices [6, 1].

Definition 1 Interference happens when two services that have no logical dependency (caller-callee re-

lation) compete for the same resource (compute, memory, I/O) to the extent that they affect each other’s

performance (e.g., throughput, latency)[7].

Nonetheless, to the best of our knowledge, current IM methods face two main limitations that pre-

vent them from effectively mitigating confounding in AD and RCA methods: (1) IM methods cover

few number of services (four as in [1, 11]) and (2) they rely solely on metrics while not considering the

interdependencies between services (call-graphs). The current interference metrics consist of con-

tention (service usage pressure on a resource, e.g., CPU) and sensitivity (susceptibility of a service be-

ing impacted by other services) [7]. While contention is scale independent, sensitivity is measured for

pairs of services [11, 1]. This limited focus on pairs hinders the measurement of the multiple sources

and targets of interference. To capture interference across numerous microservices from various ap-

plications, we have proposed an new approach that formulates the interference phenomenon as a

graph problem, more specifically as a Spatio-Temporal Graph (definition 2).

Definition 2 Spatio-Temporal Interference Graph (STIG) is denoted as G = (V,E,Xv(t), Xe(t)), where

V are nodes representing individual services, E are the directed edges representing interference between

any two services from distinct applications, Xv(t) are the time-varying features of nodes (e.g., resource

per service), and Xe(t) the features of the edges (e.g., probability of interference).

As an example of interference scenario, assume two e-commerce applications having 14 microser-

vices (shown in fig. 2) with shared common services (labeled multi-service) deployed on the same

server (either host1, host2) each with a CPU of 4 cores and 10 GB of memory. The occurrence of a

sudden surge of 200% in users during a flash sales event could subsequently cause an increase of the

demand for these applications, e.g., from 40% to 90% CPU and memory usage from 4GB to 8GB. As

the services compete for shared resources, the load increase could induce a low response time, e.g.,

800ms from originally 200ms among the resource-sharing services. This, in turn, could evolve to more

severe problems like intermittent or permanent failures. Because anomalies cross the applications’

borders, one cannot rely on the individual call-graphs and performance metrics. This limitation is

addressed by the STIG model, which captures dependencies originated both from the call-graph and

the deployment-graph (e.g., service placement configuration).

Our contributions encompass (1) an algorithm for building STIGs from execution trace data and

(2) a practical demonstration based on two microservice benchmarks (SockShop1 and TeaStore2),

which we combined into a single multi-tenant system.

2 Approach

In the following section, we explain our 4-step approach to generating STIGs (Figure 1). Foremost,

we take the call-graphs of the two e-commerce shops as input and label the services based on their

1SockShop: https://microservices-demo.github.io/
2Tea-Store: https://github.com/DaGeRe/TeaStore

2



generic functionality to produce a typed-graph (step 1). If a service is present in both shops with the

same type, we consider it as a replica service (step 2), i.e., both shops supposedly sharing that service.

This allows us to simulate the complex interdependencies typical of multi-tenant systems. Next, to

generate a hypothetical deployment configuration in a clustered environment (step 3), we apply three

different service placement criteria: (1) frequent communication - services that have a high number

of calls (dependency) between them can be deployed on the same server to reduce network latency;

(2) similar resource requirements - services with similar usage of CPU and memory can be grouped

together to ensure efficient server utilization; (3) same scaling requirements - services whose demand

grows at similar proportion can be deployed together. Following these criteria, we deployed our ser-

vices on two host nodes, hence allowing certain services to share resources across shops. In order

to generate interference sub-graphs, we traverse the typed-graph in a way to extract distinct paths

and determine whether a given path meets the conditions to be classified as an "interference path",

which is a subgraph of the deployment graph. In fig. 2, we show a deployment graph with services be-

ing placed (dashed lines) on host1 and host2, where the node’s label indicates both the service name

abbreviation and a suffix, which either stands for the shop instance (e.g., service name:shop name) or

that the service is shared (e.g., suffix Multi). This implies that there are multiple instances of a single

service in different executing paths. In this deployment graph, we consider all services that belong

to both applications. To investigate the interference phenomenon (step 4), we specify its cause and

Figure 1: Approach

Figure 2: Service deployment in a hypothetical cluster. The solid arrows stand for the caller-callee

relationship, whereas the dashed arrows represent the hosting relationship between service and host.

Original service names are abbreviated for readability.

corresponding effect as follows. The cause of an interference refers to services within an execution

trace that compete for resources with services from a distinct execution trace. The effect of an inter-

ference consists of services whose executions are hindered (i.e., sensitivity metric) by services from

a distinct execution trace. In this context, we define a time interval of interference, that represents

the maximum time overlap between the start and ending of the execution of any pair of services in

the source and target traces. This time overlap can correspond to any number of nodes executed

within these source and target traces. The probability of interference is the likelihood that a source

service interfered with one or more target services, which is determined by both the time overlap and

the amount of resources shared between source and target services. Therefore, a greater chance of

3



interference is brought on by a longer time interval and more resource usage (i.e., contention met-

ric of the source service). Using this information, we can construct the STIGs (definition 2), whose

probabilities are computed by the algorithm 1 and algorithm 2. In algorithm 1, we generate a list of

the impacted pairs that work on two sets of nodes - referred to as the sourceStack and the targetStack

based on the overlapping of execution times. The algorithm starts by sorting both source and target

Stacks at the start time of their execution (line 2) and find out the current source node and the target

nodes list based on the execution time conditions (lines 3-10). Based on that, we can estimate the

interference probabilities for the STIG (line 11 by calling algorithm 2). This involves computing for

for each source node (curSource) the list of target nodes (curTargetList) and their corresponding the

execution time overlap, as well as the magnitude of the resource usage shared with each source and

target nodes (lines 2-6). The resulting list of impacted pairs is then returned by algorithm 1 (line 12).

Concerning scalability, the algorithm 1 has linear complexity on the number of m target nodes, i.e,

O(m). The complexity of the algorithm 2 is given by sorting both lists, n × log(n), and the worst case

of comparing each node in the n-size sourceStk stack with every node in the m-size targetStk stack,

n ×m. Because m and n are related (i.e., cannot grow independently), we assume linear complexity

for the algorithm 2 as well, O(n× log(n) + n×m).

Algorithm 1 Compute List of Impacted Pairs

1: procedure IMPACTEDPAIRSLIST(sourceStk, targetStk)

2: Sort both input sets by start of execution

3: while sourceStk is not empty do
4: Pop curSource from sourceStk

5: while endTime of curSource > starting.time.target at head of targetStk do
6: Pop curTarget from targetStk

7: Put curTarget into curTargetList

8: if endingTime of curSource is < ending time of curTarget then
9: Set starting time of curTarget to endingTime of curSource

10: Push it back to stack

11: Append ComputeSTIGProb (curSource, curTargetList) to resultList

12: return resultList

Algorithm 2 Compute STIG Interference Probability Edges

1: procedure COMPUTESTIGPROB(curSource, curTargetList)

2: totalSourceT := curSource.endT ime - curSource.startT ime

3: for each node in curTargetList do
4: totalTargetT := min(curTarget.endT ime, curSource.endT ime) - curTarget.startT ime

5: curMag := curSource.resUsage + curTarget.resUsage

6: return {source, target, probability, magnitude} := curSource, curTarget, totalTargetT /

totalSourceT , curMag

3 Demonstration

We study of the interference phenomenon by selecting a query on two services belonging to dif-

ferent execution traces. For instance, we assume that the shared service instances A0 : Multi and

4



B0 : Multi (2) interfere with each other and also with neighboring services from distinct execution

traces. We compute a STIG that contains interference impact from source to target service. Figure 3

(a) shows source(front-end-M2:shop2) and target(front-end-M1:shop1) interference impact of a sin-

gle STIG. These source and target services are the instances of front-end service that are being shared

by multiple shops and deployed on the same host. The goal is to show how the front-end-M1:shop1

service instance execution is affected by front-end-M2:shop2 service instance and other downstream

services in the execution trace (i.e., sensitivity of the front-end-M1:shop1). The final probability of in-

terference is calculated by summing up the probabilities of the edges directly connecting the source

and the target nodes. The probability of interference between front-end-M2:shop2 and front-end-

M1:shop1 is relatively higher (Value:1) than between other services due to this interference (start ex-

ecution simultaneously). This also has an impact on other services because of the waiting time of

these services in a queue to start their execution. In this demonstration, the generated STIGs allowed

us to simulate various interference paths, which can, in turn, induce the propagation of anomalies

between shop1 and shop2. In this sense, we suggest that these STIG models can convey valuable

knowledge for root-cause analysis. To visualize that, we extracted only the source and target pairs of

the front-end service based on the maximum interference effect and obtained all associated source

and target pairs within the same STIG. As a result, we got a dependency structure between services

from both single and multiple simulated STIGs. As a reference, Figure 3 (b) shows a structural de-

pendency matrix (SDM) representing the interference probabilities (STIG edges) between source and

target services (STIG nodes) of two shops, where the dark color represents high probability. In the

SDM on the right, the front-end-M1:shop1 shows the highest probability (1.0) of being interfered by

front-end-M2:shop2, which stems from the assumed determinism of these services starting simulta-

neously. Conversely, as the effect of interference propagates, there is a lower interference probability,

which reflects less execution overlap among downstream services.

Figure 3: Structural Dependency Matrix. Table-A shows the probability of interference for a single

STIG, where rows represent the target of the interference and each column is the source. Table-B

consolidates the averages of interference across a set of STIGs.

4 Conclusion

We presented a novel approach to the problem of service interference in multi-tenant microservice

architectures, where concurrency over shared resources induces the propagation of complex anomaly

5



patterns. Our approach relies on a Spatio-Temporal Interference Graph (STIG) and an a correspond-

ing algorithm, which demonstrated with a hypothetical service placement cluster comprised of two

popular benchmark applications. In future work, we plan to evaluate the interference phenomenon

on a large-scale multi-tenant deployment and measure the confounding impact on the outcomes of

the state-of-the-art methods for anomaly detection and root-cause analysis.

References

[1] Madhura Adeppady, Paolo Giaccone, Holger Karl, and Carla Fabiana Chiasserini. Reducing

microservices interference and deployment time in resource-constrained cloud systems. IEEE

Transactions on Network and Service Management, 2023.

[2] Vincent Bushong, Amr S. Abdelfattah, Abdullah A. Maruf, Dipta Das, Austin Lehman, Eric

Jaroszewski, Michael Coffey, Tomas Cerny, Karel Frajtak, Pavel Tisnovsky, and Miroslav Bures.

On Microservice Analysis and Architecture Evolution: A Systematic Mapping Study. Applied Sci-

ences, 11(17), 2021.

[3] Marcello Cinque, Raffaele Della Corte, and Antonio Pecchia. Micro2vec: Anomaly detection in

microservices systems by mining numeric representations of computer logs. J. of Network and

Computer Applications, 208:103515, 2022.

[4] Shenghui Gu, Guoping Rong, Tian Ren, He Zhang, Haifeng Shen, Yongda Yu, Xian Li, Jian

Ouyang, and Chunan Chen. Trinityrcl: Multi-granular and code-level root cause localization

using multiple types of telemetry data in microservice systems. IEEE Transactions on Software

Engineering, 2023.

[5] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. Architectural principles for cloud software.

ACM Transactions on Internet Technology (TOIT), 18(2):1–23, 2018.

[6] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. Faster, deeper, easier: crowdsourcing diag-

nosis of microservice kernel failure from user space. In 30th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis, pages 646–657, 2021.

[7] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton Pu. Understand-

ing performance interference of I/O workload in virtualized cloud environments. In 2010 IEEE

3rd international conference on cloud computing, pages 51–58, 2010.

[8] Jacopo Soldani and Antonio Brogi. Anomaly detection and failure root cause analysis in (micro)

service-based cloud applications: A survey. ACM Computing Surveys, 55(3), 2022.

[9] Miguel G Xavier, Kassiano J Matteussi, Fabian Lorenzo, and Cesar AF De Rose. Understanding

performance interference in multi-tenant cloud databases and web applications. In 2016 IEEE

international conference on big data (big data), pages 2847–2852. IEEE, 2016.

[10] Ruyue Xin, Peng Chen, and Zhiming Zhao. Causalrca: Causal inference based precise fine-

grained root cause localization for microservice applications. J. of Systems and Software, 2023.

[11] Chaobing Zeng, Fangming Liu, Shutong Chen, Weixiang Jiang, and Miao Li. Demystifying the

Performance Interference of Co-Located Virtual Network Functions. In IEEE INFOCOM 2018 -

IEEE Conference on Computer Communications, pages 765–773, 2018.

6


	Introduction
	Approach
	Demonstration
	Conclusion

