
Microservices Community 2023 International Conference on Microservices

Tools for Refactoring to Microservices:
A Preliminary Usability Report

Jonas Fritzsch1 · Filipe Correia2 · Justus Bogner3 · Stefan Wagner1

1 Institute of Software Engineering, University of Stuttgart, Germany
2 Faculty of Engineering, University of Porto, Portugal

3 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

B jonas.fritzsch@iste.uni-stuttgart.de

Abstract. While Microservices are a preferred choice for modern cloud-

based applications, the migration and architectural refactoring of exist-

ing legacy systems is still a major challenge in industry. To address this,

academia has proposed many strategies and approaches that aim to auto-

mate the process of decomposing a monolith into functional units. In this

study, we review existing migration approaches regarding techniques used

and tool support. From 91 publications, we extracted 22 tools, 7 of which

address service decomposition. To assess them from an end-user perspec-

tive, we investigated their underlying techniques, installation, documenta-

tion, usability and support. For 5 of them, we generated service cuts using

reference applications. The results of our preliminary work suggest that the

inspected tools pursue promising concepts, but lack maturity and general-

izability for reliable use by industry.

1 Introduction

The microservices architectural style has been established to date as a de facto standard for modern

cloud-based software systems. However, the adoption of Microservices and migration of an exist-

ing system can be very challenging [8]. While a variety of design guidelines, pattern languages, and

best practices are available for greenfield developments [15, 18], the process of migrating an existing

system is not easily generalized. To this end, various methods and approaches have been suggested

that aim to systematize and automate this process [9, 3, 1, 11]. However, their applicability heav-

ily depends on several aspects of the system, e.g., the availability and preparation of input artifacts,

targeted quality attributes, or the maturity of accompanying tools [7].

Practitioners searching for such approaches and tools in scientific publications rarely find them

examined from an end-user perspective. While interviewing practitioners, we even found that they

are often unknown to them [8]. Secondary studies offer some perspective, but fall short of providing

practical insights gained by testing such tools in detail. Hence, in this study, our goal is to investi-

gate the current state of research on automating architectural refactoring to microservices regarding

techniques and tools, from the viewpoint of potential users – software architects and developers. We

therefore review academic literature to summarize the current state of research on techniques and

tool support for automating the decomposition into services. We install existing tools, and perform

decompositions, while documenting our experiences with their underlying techniques, installation,

documentation, usability, and support.

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.



2 Background and Related Work

Microservices address the complexity of a system through functional decomposition. However, when

transforming an existing monolithic system, developers need reliable splitting criteria. Teams often

decompose systems by business capabilities or subdomains, e.g., through Domain-Driven Design [6],

but such techniques still rely a lot on intuition. Researchers have therefore proposed a variety of

automatic and semi-automatic approaches [17], which commonly rely on static analysis techniques,

sometimes combined with dynamic analysis [2]. Schröer et al. [16] contributed a large review of 31

approaches. The majority relies on static analysis of the monolith (17), followed by techniques relying

on requirements or models as input. Dynamic analysis, i.e., observing and analyzing the monolith

during runtime, was used by only four approaches. Bajaj et al. [3] similarly reviewed 21 approaches,

including tool support for automation. However, most of the reported tools are third-party static or

dynamic analysis tools that do not generate service cuts. Kirby et al. [11] reviewed 13 approaches and

collected expectations from 10 practitioners regarding tools that automate the decomposition.

The results indicate that such tools should ideally allow suggesting and comparing decomposi-

tions using multiple relationship types simultaneously. Lapuz et al. [12] focused on dynamic tooling

for service identification. Four of the eight analyzed tools address the monolith to Microservices

migration. The most comprehensive review by Abdellatif et al. [1] covers 41 service identification

approaches, from which 13 target Microservices.

Table 1: Analysis Technique Types in Existing Reviews

Review (Year) Sources Types of Analysis Techniques

Schröer et al. [16] (2020) 31 Monolith static (17), Greenfield (9), Business Process (5), Monolith dynamic

(4), Monolith first (2)

Bajaj et al. [3] (2021) 21 Static: Requirement Docs/Models (8), Design Docs (4), Source Code (7), VCS

History (2), Dynamic (7), Hybrid (3)

Kirby et al. [11] (2021) 13 Structural-static (11), Structural-dynamic (6), Semantic (2), Evolutionary (1)

Lapuz et al. [12] (2021) 8 Dynamic analysis (8)

Abdellatif et al. [1] (2021) 13 of 41 Static analysis (10), Dynamic analysis (5), Lexical analysis (2)

The reviews (Table 1) reveal a dominance of static analysis approaches operating on models, require-

ments, and source code. Dynamic analysis is less common and mostly complements the former

technique. Some reviews [3, 1, 12] also cover tools like Structure101, JPROF, SonarGraph Architect,

DBeaver for static analysis or Kieker, ExplorViz, JProfiler for dynamic analysis. However, while they

cover the analysis part, they do not generate decompositions.

We are not aware of existing studies inspecting such tools from a user perspective to understand

how well they are prepared for industry adoption. In this study, we seek to shed light on this aspect

by focussing on tools for automating the decomposition task.

3 Method

We employed the method of a Rapid Review [5], which represents a lightweight literature review to

collect evidence in a timely manner. Our guiding research question was the following:

RQ: How practically usable are existing tools for automating the refactoring to Microservices?

2



We queried the scientific databases and search engines ACM Digital Library, IEEE Xplore, Springer

Link, and Google Scholar using the following generic search string:

("micro[-]service*") [AND "monolith*"] [AND ("refactor*" OR "transform*" OR

"migrat*" OR "decompos*" OR "partition*" OR "adopt*" OR "tool*" OR "utilit*")]

The resulting publications were filtered based on the following inclusion criteria: 1) The paper must

describe an approach to migrate a monolithic system to a Microservices-based architecture and 2)

The paper must be peer-reviewed, written in English and published in 2016 or later. Afterward, we

performed backward and forward snowballing until no new work was discovered. Figure 1 shows that

91 initial papers were identified with this process.

Figure 1: Rapid Review Process: Filtering for Tools Addressing the Decomposition

Based on this literature corpus, we applied subsequent filtering to identify tools addressing the de-

composition. Step 1 yielded 22 papers that report on tools for automating a part of the migration

process. Auxiliary tools, e.g., tools for solely creating graphical representations, have been excluded

in this step already. In Step 2, we filtered further for tools that specifically address the decomposition

task. The remaining seven approaches and tools have been inspected in-depth. In Step 3, we acquired

these tools and installed them according to their documentation on a dedicated system. This activ-

ity resulted in five successfully executable tools (see Table 2) that we set up for testing with suitable

reference applications. In the 91 sources, we identified several such, mostly Java-based, applications

that have been used frequently for evaluations and comparisons, e.g., JPetStore (7), AcmeAir (6), Day-

Trader (6), and Cargo Tracking System (5). We chose them according to their suitability for the tools’

input data format. To limit efforts, we did not use the same application for all tools, also because

the result comparison was not our intended focus. Each tool was inspected and assessed regarding

installation, documentation, usability, and support. Three software engineering master’s students

separately inspected the tools, discussed their experiences, and formed a consensus using a three-

point ordinal scale (A-C), with A reflecting a good, B a medium, and C a poor experience. The details

of our rapid review and tool inspections can be found online.1

4 Results

We briefly introduce and characterize the five tools that we were able to execute (see Table 2). In

this regard, we take the practitioner’s perspective and share our experiences on their installation,

documentation, usability, and support.

The tool Mono2Micro contributed by the GitHub organization socialsoftware was published in

2019 under the MIT License and is currently under active development [2]. The creators’ goal was to

1https://doi.org/10.5281/zenodo.7949154

3

https://doi.org/10.5281/zenodo.7949154


provide an automated workflow for the identification of Microservices considering the trade-off be-

tween consistency and partition tolerance in the sense of the CAP theorem. The tool’s usability profits

from a web-based UI visualizing the decomposition as a graph. The interface allows for several ad-

justments, even if functionalities are not always easy to locate and interpret. The developers provided

support by promptly answering our questions and handling our submitted GitHub issue.

The tool Service Cutter was contributed by Gysel et al. [10] in 2016 and is freely available under

the Apache License 2.0 license. The web-based tool follows a model-driven approach and thereby

achieves a high degree of general applicability. While Service Cutter’s usability profits from the clean

UI and its wide applicability, generating the necessary input for industry-scale applications is not

feasible without additional tooling. Service Cutter is no longer maintained as of March 2021, and

hence developer support cannot be expected.

Table 2: Characterization of Executable Tools for Decomposition

ID Tool Name Technique Installation Documentation Usability Support

1 Mono2Microa (socialsoftware) static code B - B B

2 Service Cutterb static model A B B C

3 Mono2Microc (IBM) static & dynamic B A-B B A

4 Microservices Identificationd static lexical A - C C

5 MonoBreakere static & dynamic B B-C B B-C

A = easy/good, B = fair/sufficient, C = poor/insufficient

a https://github.com/socialsoftware/mono2micro,
b https://servicecutter.github.io,
c https://www.ibm.com/cloud/mono2micro,
d https://github.com/miguelfbrito/microservice-identification,
e https://github.com/tiagoCMatias/monoBreaker

IBM offers Mono2Micro, an AI-based and semi-automated tool for refactoring monolithic Java

applications into Microservices. The tool is under active development and can be used under a

paid license with optional professional support. Mono2Micro is an industry-ready tool with solid

command-line usability and combines static and dynamic analysis for optimal results. However, it

can only be used for applications running on Websphere Application Server Liberty or Open Liberty.

The tool Microservices Identification was published in 2019 on GitHub by Brito [4] and aims to

identify plausible decompositions of Java-based monoliths into Microservices. For that, the tool relies

on a semantic technique based on lexical analysis. The documentation is brief: calculated metrics

as well as command lines options are not sufficiently explained. Likewise, the solely textual output

with no functionality to comfortably inspect the resulting service cuts negatively affects usability.

Developer support cannot be expected as the project is no longer maintained.

The tool MonoBreaker by Matias et al. [14] is the second one that combines static and dynamic

analysis. It is available under the MIT license, and can operate on applications developed using

Python with the Django web framework and the Django REST framework. This limits its applicability

but makes for a refreshing exception to the prevalent Java focus of the other analyzed tools. Our us-

ability experiences are based on running the tool over the command line in an industrial context and

revealed a smooth installation and use. The results, however, cannot be visually inspected. Developer

support can not be expected either, as the project is no longer maintained.

4

https://github.com/socialsoftware/mono2micro
https://servicecutter.github.io
https://www.ibm.com/cloud/mono2micro
https://github.com/miguelfbrito/microservice-identification
https://github.com/tiagoCMatias/monoBreaker


5 Limitations

The rapid review method bears the risk of missing out on important publications. We tried to mitigate

this by relying on existing reviews and performing exhaustive snowballing. The selection of tools for

inspection was influenced by the researchers’ capabilities in successfully installing and running them.

The generalizability of our tool inspection is limited, as it mainly conveys the experiences made by

software engineering master’s students. We tried to mitigate this threat and minimize subjectiveness

of the ratings through discussions in the group and involving experienced researchers in the field. We

chose sample applications which ensured the tools’ input requirements to be fully met. Our usability

ratings have to be interpreted in this regard. Moreover, we did explicitly not assess the decomposition

results of these tools, i.e., the plausibility and soundness of the generated service cuts.

6 Discussion and Conclusion

In this work, we reviewed the tool support for Microservices migrations, targeting the decomposition

task. From initially 91 approaches, we filtered out five executable and practically usable tools. All of

them use static analysis techniques, while only IBM’s Mono2Micro and MonoBreaker apply dynamic

analysis of the monolith in addition. Three out of five tools are limited to Java-based source code,

one requires Python input, while Service Cutter is the only language-agnostic tool. When estimating

their technological maturity on the scale of technology readiness levels [13], we locate the inspected

tools between 4 and 6 with IBM’s Mono2Micro being the most mature tool. Despite the outlined lim-

itations, our work can provide guidance to professionals seeking a tool for adoption. We encourage

tool builders from inside and outside academia to follow up on these promising examples. For that,

the numerous existing approaches we reviewed can serve as a valuable groundwork to build upon.

Essential for practical applicability are generalizability, meaningful visualizations, and a sound doc-

umentation, ideally accompanied by a use case example. We will continue our efforts to thoroughly

evaluate tools for automating the decomposition into Microservices from the practitioners’ perspec-

tive. As important future work, we regard comparatively assessing the quality of generated service

cuts, particularly involving industry-scale systems. Involving grey literature might bring to light addi-

tional approaches and tools not covered by academia.

References

[1] Manel Abdellatif, Anas Shatnawi, Hafedh Mili, Naouel Moha, Ghizlane El Boussaidi, Geoffrey

Hecht, Jean Privat, and Yann-Gaël Guéhéneuc. A taxonomy of service identification approaches

for legacy software systems modernization. Journal of Systems and Software, 173, 2021.

[2] Bernardo Andrade, Samuel Santos, and António Rito Silva. From Monolith to Microservices:

Static and Dynamic Analysis Comparison. pp, 2022.

[3] Deepali Bajaj, Urmil Bharti, Anita Goel, and S. C. Gupta. A Prescriptive Model for Migration to

Microservices Based on SDLC Artifacts. Journal of Web Engineering, 2021.

[4] Miguel Brito, Jácome Cunha, and João Saraiva. Identification of microservices from monolithic

applications through topic modelling. In Proceedings of the 36th Annual ACM Symposium on

Applied Computing, SAC ’21, page 1409–1418, New York, NY, USA, 2021. ACM.

5



[5] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. Rapid reviews in software engineering. In

Contemporary Empirical Methods in Software Engineering. Springer, 2020.

[6] Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-Wesley

Professional, 2004.

[7] Jonas Fritzsch, Justus Bogner, Markus Haug, Ana Cristina Franco da Silva, Carolin Rubner,

Matthias Saft, Horst Sauer, and Stefan Wagner. Adopting microservices and DevOps in the cyber-

physical systems domain: A rapid review and case study. Software: Practice and Experience,

53(3):790–810, November 2022.

[8] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Microservices Migration

in Industry: Intentions, Strategies, and Challenges. In 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE, 2019.

[9] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. From monolith to mi-

croservices: A classification of refactoring approaches. In Software Engineering Aspects of Con-

tinuous Development and New Paradigms of Software Production and Deployment. Springer,

2019.

[10] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. Service Cutter: A

Systematic Approach to Service Decomposition. In Lecture Notes in Computer Science, volume

9846, pages 185–200. Springer, 2016.

[11] Lisa Kirby, Evelien Boerstra, Zachary Anderson, and Julia Rubin. Weighing the Evidence: On

Relationship Types in Microservice Extraction. The 29th IEEE/ACM International Conference on

Program Comprehension (ICPC), 1:1–11, 2021.

[12] Neil Lapuz, Paul Clarke, and Yalemisew Abgaz. Digital transformation and the role of dynamic

tooling in extracting microservices from existing software systems. In Communications in Com-

puter and Information Science, pages 301–315. Springer, 2021.

[13] John C Mankins et al. Technology readiness levels. White Paper, April, 6, 1995.

[14] Tiago Matias, Filipe F. Correia, Jonas Fritzsch, Justus Bogner, Hugo S. Ferreira, and André Restivo.

Determining microservice boundaries: A case study using static and dynamic software analysis.

In Software Architecture. Springer, 2020.

[15] Sam Newman. Building microservices. "O’Reilly Media, Inc.", 2021.

[16] Christoph Schröer, Felix Kruse, and Jorge Marx Gómez. A qualitative literature review on mi-

croservices identification approaches. In Service-Oriented Computing. Springer, 2020.

[17] Aleksandra Stojkov and Zeljko Stojanov. Review of methods for migrating software systems to

microservices architecture. Journal of Engineering Management and Competitiveness, 2021.

[18] Guilherme Vale, Filipe Figueiredo Correia, Eduardo Martins Guerra, Thatiane de Oliveira Rosa,

Jonas Fritzsch, and Justus Bogner. Designing Microservice Systems Using Patterns: An Empirical

Study on Quality Trade-Offs. In 2022 IEEE 19th International Conference on Software Architecture

(ICSA), pages 69–79. IEEE, 2022.

6


	Introduction
	Background and Related Work
	Method
	Results
	Limitations
	Discussion and Conclusion

