
Microservices Community 2023 International Conference on Microservices

What Microservice Teams Need to Know
of Each Other

Jonas Sorgalla1

1 IDiAL Institute, Fachhochschule Dortmund, Dortmund, Germany

B jonas.sorgalla@fh-dortmund.de

Abstract. Building microservice-based applications inherently becomes an

effort of multiple teams collaborating to achieve a common goal. While pre-

vious research has shown that the necessary alignment of organization and

software architecture is a major challenge in the application of microser-

vices, the act of collaboration has not been researched in detail. Therefore,

we conduct a first qualitative study comprising five experts on which types

of information should be shared between teams for successful microservice

development. Our results show that the planned evolution of a microser-

vice and the affiliation to business processes are of primary concern when

it comes to information that should be shared between teams. Our findings

can be used in tool development, to cross-reference information sharing be-

havior in practice, as well as foundation for future quantitative research.

1 Introduction

The microservice architecture style (MSA) has become the standard for complex distributed appli-

cations in practice. In particular, due to the scalability and availability opportunities opened up by

MSA-based systems, the architecture style is the de facto standard for larger web applications such as

e-Commerce or streaming platforms [8].

However, the quality features of a microservices system do not come without cost in the develop-

ment process. The fact that microservices must be planned, developed, operated, and maintained

as autonomous software modules increases the complexity of the task for those responsible in that a

variety of skills and knowledge from all areas of the software lifecycle are required. A particular chal-

lenge here is that MSA also demands adaptation of the organization [5]. Indeed, in order to create

truly autonomous software building blocks in the mid- and long-term, as well as to keep the cou-

pling between microservices loose, this autonomy and loose coupling must also be reflected in the

communication structure of the developing organization. This natural relationship, known as Con-

way’s Law [3], ensures that for MSA development a structure of multiple teams emerges, where each

team is fully responsible for one or more services, i.e., team members having all the competencies to

support the microservice throughout its software lifecycle [8]. However, the structuring into differ-

ent teams raises the question of how it is possible to align the teams towards a common goal while

ensuring as much autonomy as possible so that the teams actually produce microservices that are as

autonomous as possible. In this research, we contribute to answering this question by investigating

what information should be shared between teams in a microservice development process, i.e., what

should the teams know of each other? We do this by conducting a qualitative study in the form of

expert interviews.

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.



The remainder of this paper is structured as follows. In Section 2 we provide a brief overview of

related empirical studies. Section 3 introduces the study’s research design and Section 4 describes

its execution. We present our results in Section 5. Finally, we discuss and conclude our findings in

Section 6.

2 Related Work

Although we are not aware of any study in which information types are investigated between teams

in the area of MSA development specifically, there is research in similar areas that relates to our study

from the domains of large-scale agile development research [4], which generally deals with the appli-

cation of agile principles in larger projects, as well as empirical research on MSA.

Regarding large-scale agile development, Dikert et al. conducted a systematic literature review on

challenges and success factors for applying agile principles in multi-team scenarios [4]. As microser-

vice teams are generally cross functional and apply agile principles [8], the results from Dikert et al.

are relevant. The study shows that coordination challenges in a multi-team environment are quite

common and were reported in 31% of the 42 studies investigated. Besides challenges such as the

lack of standardized build scripts, synchronizing the definitions of software interfaces, and balancing

team goals with organization goals, the study does not provide more details on the actual informa-

tion that should be shared to mitigate named challenges. Moe et al. provide a study specifically on

team autonomy in large-scale agile scenarios [7], which is of particular interest since MSA teams have

to be autonomous by design. Their findings indicate the importance of sharing goals between such

teams. They also find that teams need to communicate about access to shared resources or unclear

requirements. As both studies indicate, interfacing between teams is not a challenge exclusive to or-

ganizations applying MSA but to large-scale agile development, in general. However, they naturally

lack details on information types that are shared, such as those dependent not only on the organiza-

tion but also the software architecture style of the system-under-development.

Concerning empirical research in the domain of microservices, there are also several related con-

tributions. For example, Fritzsch et al. have conducted 16 interviews with practitioners regarding

challenges, intentions, and strategies for microservice migration [5]. They identify organizational

structure and team collaboration as crucial points for successful migration. Team communication as

a research direction for MSA has already been identified by Lenarduzzi & Sievi-Korte [6]. They pro-

pose a large-scale multi-case study. The results of our study can be understood as a first step in this

direction and serve as means to build proper instrumentation for a larger study.

3 Methodology

As our study aims to understand the nature and reason of communication between microservice

teams, we leverage expert interviews, which is a survey method and can be categorized as a qualitative

research approach which is particularly suitable for such exploratory purposes [10]. Using the GQM

template for goal definition [1], the goal of our study can be summarized as follows.

Analyze team communication in microservice development processes for the purpose of

understanding team collaboration with respect to their shared information types from the point of

view of process experts in the context of large-scale agile development of MSA.

2



For data collection, i.e., conducting the interviews, we prepared a semi-structured guideline with

the main focus on the what, why and how of information sharing between teams: (i) What informa-

tion are important for teams to successfully collaborate for an MSA application? (ii) Why are they

important? (iii) How should they be communicated; e.g., how should documentation look like?

Our guideline also includes an initial statement regarding work and MSA experience. Potential in-

terview experts should at least have 3 years of experience working in organizations applying MSA as

well as having held a position with process responsibility, i.e., they should have interacted with mul-

tiple teams and, thus, be knowledgeable of communication happening between teams. We recruited

the interviewees in a non-probabilistic way based on existing contacts. Initially, we discussed MSA in

general to ensure that interviewees shared a common understanding of the architectural style.

4 Execution

In total, we conducted five interviews in winter of 2022/2023 each lasting approximately one hour.

Each interview was conducted via video call and recorded. When conducting the interview, we loosely

followed our interview guideline and, depending on the type of information mentioned, asked clari-

fying follow-up questions. For analysis, we transcribed each interview and applied an inductive cod-

ing procedure comparing the types of information mentioned and the reasoning of each expert. We

made the main questions of the survey known to the interview partners a few days before the inter-

view so that they could organize and prepare their thoughts. Table 1 shows the demographic data of

our interviewees. We labeled the interviewees from I1 to I5.

Id
Professional
Background

Work Experience
in years

Microservice Experience
in years

I1 Tech Lead 10 7

I2 Full Stack Engineer 9 7

I3 Senior Architect 25 7

I4 Senior Architect 20 7

I5 DevOps Engineer 8 3

Table 1: Demographic data of interviewees.

5 Results

Table 2 lists all types of information that our experts have mentioned as relevant for microservice

collaboration. In the following, we elaborate about the categories that we established to make the

information types more manageable.

In general, our interviewees report that large scheduled and recurring meetings bringing together

multiple members of all teams would not be purposeful and, in fact, counterproductive to team au-

tonomy. The resulting personnel costs and the time to invest would probably even hinder effective

development. More purposeful are planned and recurring meetings organized by function or exper-

tise. I2 states in this regard, “the scrum masters from each team sit down together or the product

owners from each team and then discuss something like the sprint focus, e.g., we want to make the

3



Category Information Type I1 I2 I3 I4 I5

Fundamental

Link to Codebase • • • • •
Link to Running Test Instance • • • • •
Technical Interface Description • • • • •

Guidance
Guidelines for Interface • •
Security Concerns •

Evolution

Planned Features • • • •
Single Point of Contact • • • •
Purpose of Service • • •
Quality Metrics •

Process

Involvement

Consumed and Consuming Services • • • • •
Associated Business Processes • • •

Innards

Infrastructure-as-Code • • •
Technology Stack • •
Design Decisions •
Risks •
Technical Debt •

Runtime

Behavior

Known Errors/Issues • •
Expected Operational Behavior •

Table 2: Identified information types for successful team collaboration in the context of MSA.

search better in the system.” The people who attend such scheduled meetings then have a multiplier

role within their respective teams. However, our experts agree that there should be a set of informa-

tion that other teams can access on demand. This includes the majority of the information types

mentioned to us.

[Fundamental] Among the information to be made available to other teams, our experts unani-

mously name link to the code base of the microservice in question, a link to a running test instance

of the service, and a technical interface description, which should usually be available in the form of

a self-describing interface accessible through the running instance, e.g., using OpenAPI1, as funda-

mental for any team collaboration. These information enable other teams to be sure that they are

actually implementing against the current interface and not using outdated documentation. It also

enables early testing of the interaction of services.

[Guidance] In addition to the fundamental information about a microservice, I1 and I5 also describe

guidance, such as a guideline on how to consume the service interface or which security concerns

should be addressed when using the service, for other teams as helpful.

[Service Evolution] Our experts state that it is important that teams are able to inform themselves

about the evolution of other teams’ microservices in the future in order to take changes of microser-

vices into account for their own development effort, e.g., when a microservice that the team’s mi-

croservice depends on is changing the interface structure. In particular, most of our experts men-

tioned planned features and a general purpose statement of the service to be relevant for teams to

assess the impact of evolution on their microservices. I1 mentions that, especially in larger systems,

the purpose of a microservice is not enough and teams need to be able to gather information on

quality metrics of the service, that is, what defines for the owning team whether the microservice im-

1https://www.openapis.org/

4

https://www.openapis.org/


plementation is good or not, such as the service is optimized for quick loading time. Furthermore,

all interviewees except I1 also mention the need for a single point of contact, i.e., a single person to

contact when questions regarding a particular microservice arise, e.g., to clarify how the interface will

evolve or when an expected breakdown occurs during operation.

[Process Involvement] All of our respondents said that it was important for teams to know which ser-

vices their microservice depends on and which other teams use it in turn. This should be information

that employees are actively informed about. I3 clarifies that this is important because it aligns a team

with the common goal of the organization and, especially when services evolve, “I think I also have to

know the dependencies to all calls, in order to know on whom I have an impact on.” I1 mentions in

this regard “you have to understand who is upstream and downstream [of your microservice]. How-

ever, that is a question that is not always trivial because sometimes, especially in larger organizations,

you do not know anything about the teams with which your written software might interact with. But

for business interest in general and also for the stack of your own team’s standing in the organization,

it can be quite important to investigate.” I1, I3, and I4 also state that it is not enough to know the

call chain but that it is also important for the creation of a common goal what place a team has in

business processes. Here, I1 specifically suggests that teams should be shown their place in the ser-

vice blueprints [2] of the product they develop for. I4 also mentions the technical necessity: “when

we have more complex processes that go across different data stores or services, then it’s very impor-

tant to understand the process dependency because it’s often necessary to do steps in a certain order

because otherwise you kind of don’t have a consistent process or a consistent data store anymore.”

[Innards] Our experts attribute only a minor role to the inner structure of a microservice for collabo-

ration with other teams. As I3 describes, “the relevant thing for outsiders is not how the microservice

works inside, i.e., the code, how it is implemented, and so on. [...] Actually, I want to know what input

parameters I have. What are the valid return parameters? How is the data structure?” However, as I1,

I2, and I5 mention, it might be relevant to share information of the infrastructure that is necessary

to run the service, best as Infrastructure-as-Code, e.g., Helm charts2, when other teams want to run

a foreign service for testing. I1 and I5 mention the technology stack as useful information because it

enables teams to better look for best practices applied by others. Furthermore, I5 mentions attributes

such as design decisions, risks and technical debt, however, he is not sure about their usefulness.

[Runtime Behavior] I4 suggests that “what else is interesting are questions regarding operational be-

havior, like how is the expected performance or what is the usual latency. If I have somehow detected

a poor response time for my service, is it caused on my site or is it due to other microservices that I

rely on?” In this sense, I1 and I4 both consider the information on known errors as important.

6 Conclusion

Our study identified 18 types of information that experts consider important to share between teams.

Most crucial seem information that provide means for teams to work with another team’s service

in general. Although we expected process involvement to be named in the same capacity, we were

surprised at how vehemently all experts made this point. Developing a shared vision is essential for

autonomous teams to work efficiently in multi-team scenarios [4]. As we noted in a previous study,

smaller organizations that develop MSA in particular seem to be challenged by this tension between

alignment and autonomy [9]. Making transparent the process to which the team’s microservice con-

2https://helm.sh/

5

https://helm.sh/


tributes in the big picture seems to be an aid addressing this issue. The third important category

we identify is information about the future evolution of other services because it may influence the

future evolution of a team’s microservices due to service dependencies.

Regarding the validity of our study, we rate threats to internal validity as low as we recorded and

transcribed the interviews, gave our participants the chance to feedback the transcribe, and our

study’s general more descriptive focus. However, there might be a participant bias in which experts

have not mentioned information types that are too self-evident. We addressed this threat by provid-

ing the interview guideline in advance. Concerning external validity, our results are not sufficient for

an actual generalization due to the small sample size. However, our study provides a good foundation

for further research, e.g., in the form of a quantitative survey and prototypical tool development to

improve team collaboration in MSA development.

References

[1] Victor R Basili and H Dieter Rombach. The tame project: Towards improvement-oriented soft-

ware environments. IEEE Transactions on software engineering, 14(6):758–773, 1988.

[2] Mary Jo Bitner, Amy L Ostrom, and Felicia N Morgan. Service blueprinting: a practical technique

for service innovation. California management review, 50(3):66–94, 2008.

[3] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

[4] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success factors for large-

scale agile transformations: A systematic literature review. Journal of Systems and Software,

119:87–108, 2016.

[5] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Microservices migration

in industry: intentions, strategies, and challenges. In 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 481–490. IEEE, 2019.

[6] Valentina Lenarduzzi and Outi Sievi-Korte. On the negative impact of team independence in

microservices software development. In Proceedings of the 19th International Conference on

Agile Software Development: Companion, pages 1–4, 2018.

[7] Nils Brede Moe, Bjørn Haug Dahl, Viktoria Stray, Lina Sund Karlsen, and Stine Schjødt-Osmo.

Team autonomy in large-scale agile. In Proceedings of the Annual Hawaii International Confer-

ence on System Sciences (HICSS), pages 6997–7006. AIS Electronic Library, 2019.

[8] Sam Newman. Building microservices. " O’Reilly Media, Inc.", 2021.

[9] Jonas Sorgalla, Philip Wizenty, Florian Rademacher, Sabine Sachweh, and Albert Zündorf. Ap-

plying model-driven engineering to stimulate the adoption of devops processes in small and

medium-sized development organizations: the case for microservice architecture. SN Computer

Science, 2(6):459, 2021.

[10] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén.

Experimentation in software engineering. Springer Science & Business Media, 2012.

6


	Introduction
	Related Work
	Methodology
	Execution
	Results
	Conclusion

