
Microservices Community 2023 International Conference on Microservices

Towards Concern-Oriented Microservice
Architecture

Hugo Monfleur · Philippe Merle

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

B hugo.monfleur@inria.fr

Abstract. Existing microservice architecture languages do not allow for the

distinction and expression of intertwined cross-cutting architectural con-

cerns, i.e. aspects that affect several microservices, without the possibility

of being encapsulated in any of them. To address this problem, this pa-

per proposes the Concern-Oriented Microservice Architecture metamodel

where cross-cutting architectural concerns are first-class citizens and show

how the worldwide-used Docker Compose language can be equipped with

new concern-oriented constructions. This extension is applied to the TeaS-

tore microservice reference application.

1 Introduction

Any microservice application has to deal with cross-cutting architectural concerns, i.e. aspects that

affect several microservices, without the possibility of being encapsulated in any of them. A par-

ticular concern can then be defined formally as a predicate on units that indicates whether or not a

given unit pertains to that concern1. The problem lies in the fact that these concerns often cannot

be cleanly decomposed from the rest of the system in both the design and implementation, and can

result in either scattering (code duplication), tangling (significant dependencies), or both [7]. Sepa-

ration of concerns, probably coined by Edsger W. Dijkstra in [1] and consisting in the study of one’s

subject matter in isolation for the sake of its own consistency, is then vital for concision, comprehen-

sion, maintainability, and evolvability of microservice architectures.

To help get a better grip of what a concern is and how diverse they can be in the context of

microservice applications, we introduce three examples. Firstly, each application is composed of

microservices. Some are dedicated to implementing business logic while others implement non-

functional properties such as logging, monitoring, distributed tracing, persistence, security, or fault-

tolerance. All of these relate to high level architecture decisions that determine the value of prop-

erties of microservices in regard to a particular aspect. As such they are cross-cutting architectural

concerns. Secondly, various design patterns have been identified in the literature (e.g. [5]) to archi-

tect business and non-functional properties such as Service Registry, API Gateway, Circuit Breaker, or

Distributed Tracing. Here again, these patterns are cross-cutting architectural concerns. Finally, each

application has its own patterns for naming microservice identities, images, environment variables,

etc. To the best of our knowledge, there is no microservice architecture language offering construc-

tions for dealing with such cross-cutting architectural concerns.

1https://web.archive.org/web/20080122043747/http://www.research.ibm.com/hyperspace/ConcernSpaces.htm

© 2023 The Authors. This is document is shared under the terms of the Creative Commons Attribution License (CC-BY 4.0),
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

https://web.archive.org/web/20080122043747/http://www.research.ibm.com/hyperspace/ConcernSpaces.htm

This paper argues for making all intertwined cross-cutting architectural concerns first-class citi-

zens of microservice architecture languages. This implies equipping microservice architecture lan-

guages with new concern-oriented constructions. In order to be language-agnostic, we propose a

Concern-Oriented Microservice Architecture metamodel where cross-cutting architectural concerns

are first-class citizens. In order to be concrete, we choose to extend the Docker Compose language as

it is largely used in both academia and industry. A recent search on GitHub2 returns more than 672k

Docker compose files. Then we apply this concern-oriented extension of Docker Compose to TeaSt-

ore, a micro-service reference application3 [8]. We chose this use case for validating our proposal as

it has been quoted in over 100 scientific publications4 and is also used in industry, e.g. by the Cisco

Full Stack Observability Lab5.

The rest of the paper is organized as follows. Section 2 presents our motivating example, the TeaSt-

ore application, and emphasizes its multiple scattered cross-cutting architectural concerns. Section 3

overviews the principles of our Concern-Oriented Microservice Architecture contribution, then revis-

its TeaStore for making its concerns first-class citizens of Docker Compose, and sketches a toolchain

for dealing with concern-oriented microservice architectures. Section 4 reviews some related work.

Finally, Section 5 concludes and discusses future perspectives.

2 Motivating Example

TeaStore is a micro-service reference application for benchmarking, modeling, and resource manage-

ment research [8]. This application, developed as a real-life application with best practices in mind,

is an online shop for tea and tea-related utilities [8]. TeaStore is composed of seven microservices: six

are represented in Figure 1, and the seventh is a database dedicated to the Persistence microservice.

Figure 1: Architecture of the TeaStore application [8]

Listing 1 is the Docker Compose file of the default architecture of the TeaStore application6.

1 version: '3'

2 services:

3 registry:

4 image: descartesresearch/teastore -

registry

5 expose:

2https://github.com/search?q=path%3A**%2Fdocker-compose*.y*ml&type=code
3https://github.com/DescartesResearch/TeaStore
4https://scholar.google.fr/scholar?cites=7828615202992379775
5https://fso.cisco-one.com/lab-environment/
6https://raw.githubusercontent.com/DescartesResearch/TeaStore/master/examples/docker/docker-compose_default.

yaml

2

https://github.com/search?q=path%3A**%2Fdocker-compose*.y*ml&type=code
https://github.com/DescartesResearch/TeaStore
https://scholar.google.fr/scholar?cites=7828615202992379775
https://fso.cisco-one.com/lab-environment/
https://raw.githubusercontent.com/DescartesResearch/TeaStore/master/examples/docker/docker-compose_default.yaml
https://raw.githubusercontent.com/DescartesResearch/TeaStore/master/examples/docker/docker-compose_default.yaml

6 - "8080"

7 db:

8 image: descartesresearch/teastore -db

9 expose:

10 - "3306"

11 ports:

12 - "3306:3306"

13 persistence:

14 image: descartesresearch/teastore -

persistence

15 expose:

16 - "8080"

17 environment:

18 HOST_NAME: "persistence"

19 REGISTRY_HOST: "registry"

20 DB_HOST: "db"

21 DB_PORT: "3306"

22 auth:

23 image: descartesresearch/teastore -auth

24 expose:

25 - "8080"

26 environment:

27 HOST_NAME: "auth"

28 REGISTRY_HOST: "registry"

29 image:

30 image: descartesresearch/teastore -image

31 expose:

32 - "8080"

33 environment:

34 HOST_NAME: "image"

35 REGISTRY_HOST: "registry"

36 recommender:

37 image: descartesresearch/teastore -

recommender

38 expose:

39 - "8080"

40 environment:

41 HOST_NAME: "recommender"

42 REGISTRY_HOST: "registry"

43 webui:

44 image: descartesresearch/teastore -webui

45 expose:

46 - "8080"

47 environment:

48 HOST_NAME: "webui"

49 REGISTRY_HOST: "registry"

50 ports:

51 - "8080:8080"

Listing 1: Default Docker Compose of the

TeaStore Application

Even if this motivating example seems simple, it contains seven intertwined cross-cutting archi-

tectural concerns. The first concern is related to the identity (e.g. registry) of the six business mi-
croservices shown in Figure 1, and is scattered across lines 3, 13, 22, 29, 36, and 43. The second

concern is related to the Persistence composite microservice, which is split into both strongly cou-

pled persistence and db microservices (Lines 7-21). The third concern is the Service Registry design
pattern, scattered across lines 3, 19, 28, 35, 42, and 49. persistence, auth, image, recommender and

webui microservices can discover each others via the registry microservice. The fourth concern is

related to the image naming pattern, scattered across lines 4, 8, 14, 23, 30, 37, and 44. We can no-

tice that all seven image names share the same prefix descartesresearch/teastore- and their suffix

is always the identity of their owning microservice. The fifth concern is the host name regularity
scattered across lines 18, 27, 34, 41, and 48. The HOST_NAME environment variable is always assigned

to the identity of its owning microservice. The sixth concern is the exposed container network port
regularity scattered across lines 5-6, 15-16, 24-25, 31-32, 38-39, and 45-46. The six business services

expose the same container network port, aka 8080. Finally, the seventh concern is related to public
network ports exposed by the TeaStore application, and is scattered across lines 11-12 and 50-51.

Only ports 3306 of db and 8080 of webui are publicly accessible.

3 Concern-Oriented Microservice Architecture

3.1 Principles

As illustrated in Figure 2a, in a classical Microservice Architecture (MSA) approach, each Application
owns a none-empty set of microservices. Each Microservice has a unique distinct identity msid (e.g.

3

registry) and owns a non-empty set of properties. Each Property has a unique distinct name (e.g.

image) and a value (e.g. descartesresearch/teastore-registry).

(a) MSA Metamodel (b) COMSA Metamodel

Figure 2: Microservice Architecture vs Concern-Oriented Microservice Architecture

As illustrated in Figure 2b, the metamodel of our Concern-Oriented Microservice Architecture

(COMSA) approach is subtly different. Each Application owns a non-empty set of concerns, making

concerns first-class citizens. Each Concern has a unique distinct identity cid and references a non-

empty set of microservices. A microservice can be shared by several concerns. Each Microservice
still has the msid attribute but references a set of properties instead of owning its properties. Thus a

property can be shared by several microservices. Finally, Property is unchanged.

The abstract concepts of our COMSA approach must be concretely implemented in target existing

microservice architecture languages. The next section illustrates how the COMSA concepts can be

reflected by new concern-oriented constructions in the Docker Compose language.

3.2 Motivating Example Revisited

Listing 2 revisits the motivating TeaStore example by making its seven concerns first-class citizens

thanks to the new concerns construct in Line 2.

1 version: '3'

2 concerns:

3 BusinessServices:

4 services:

5 (registry , persistence , auth , image , recommender , webui):

6 DescartesResearchImages:

7 services:

4

8 ALL:

9 image: descartesresearch/teastore -{SID}

10 RegistryDesignPattern:

11 services:

12 BusinessServices:

13 expose:

14 - "8080"

15 BusinessServices \ registry:

16 environment:

17 HOST_NAME: "{SID}"

18 REGISTRY_HOST: "registry"

19 Persistence:

20 services:

21 db:

22 expose:

23 - "3306"

24 persistence:

25 environment:

26 DB_HOST: db

27 DB_PORT: "{db.expose [0]}"

28 Ports:

29 services:

30 (db , webui):

31 ports:

32 - "{ expose [0]}:{ expose [0]}"

Listing 2: Concern-Oriented TeaStore Applications

The first concern is encoded by BusinessServices at Lines 3-5. Line 5 shows another new con-

struct to define sets of microservices. DescartesResearchImages at Lines 6-9 encodes the fourth con-

cern previously identified. Lines 8-9 encode the fact that all microservices of the TeaStore application

(ALL keyname) share a common image naming pattern. The {SID} expression refers to the microser-

vice identity. RegistryDesignPattern at Lines 10-18 mainly implements the third concern at Line

18 but also the fifth and sixth concerns, Line 17 and Lines 12-14 respectively. In fact, both regu-

larities are strongly coupled with the service registry design pattern. Line 12 shows how to refer to

all the microservices of another concern (here BusinessServices) and Line 15 illustrates the differ-

ence operation between sets: BusinessServices \ registry equals to (persistence, auth, image,

recommender, webui). The second concern is implemented by Persistence at Lines 19-27. The ex-

pression {db.expose[0]} accesses the first item of the expose array property of the db microservice.

Finally, the seventh concern is encoded by Ports at Lines 28-32. Both {expose[0]} expressions access

the first item of the expose property of the current microservice (db then webui).

To summarize, our concern-oriented extension of the Docker Compose language provides:

• the new concerns keyword for making concerns first-class citizens of Docker Compose,

• a new notation to manipulate sets of microservices, and

• a powerful notion of expressions to avoid redundancy of property values.

This extension provides multiple benefits such as clear separation of microservice concerns for better

comprehension, concision (32 lines instead of 51 lines, i.e. a gain of 37% for the TeaStore application),

ease of maintainability, and evolvability.

5

3.3 COMSA Toolchain

Figure 3 shows the current architecture of our concern-oriented microservice architecture toolchain.

Figure 3: Concern-Oriented Microservice Architecture Toolchain

Concerns verification targets the verification and validation of COMSA files, i.e. syntactical and

semantics checking of concern declarations, microservice sets, and property value expressions. Con-
cerns Visualization generates visual concern-oriented diagrams. Hypergraphs are particularly well

suited to visualize concern-based applications as illustrated in the right part of Figure 3, i.e. a hyper-

graph representing the concerns of the TeaStore application. Compose Generation generates stan-

dard Docker Compose files from COMSA files, i.e. compose the concerns expressed in Listing 2 to

generate Listing 1 automatically. Concerns Extraction does the reverse job of extracting concerns

from any existing Docker Compose files. Here the challenge is to find the right heuristics to automat-

ically build pertinent concerns.

4 Related Work

To the best of our knowledge, no MSA language provides concern-oriented constructions even though

some MSA languages deal with specific concerns. LEMMA [4] is a modeling MSA language ecosys-

tem including four viewpoints (Domain, Operation, Service, Technology), each addressing a specific

set of stakeholders’ concerns. Silvera [6] is a Domain-Specific Language for modeling MSA includ-

ing constructions to deal with only five MSA design patterns, i.e. Service Registry, API Gateway, RPC

and Messaging Communication Styles, and Circuit Breaker. MicroART [3] provides a MSA recovery

metamodel including an attribute to qualify the nature of each microservice, i.e. functional (what

we name business), monitoring, system-level management, service orchestration, service brokering,

security, service proxy, and data storage. All these can be easily represented by our MSA concerns.

5 Conclusion and Perspectives

The key idea of this paper is to make any cross-cutting architectural concern a first-class citizen of

MSA languages. For this, the paper introduces the COMSA approach, its metamodel and its toolchain,

proposes a concern-oriented extension of the Docker Compose language, and applies it to the well-

known TeaStore microservice reference application [8].

6

COMSA work is still in its infancy. Perspectives encompass enhancing COMSA principles, meta-

model and toolchain, applying COMSA to various large-scale MSA applications such as those of the

DeathStarBench benchmark suite [2], developing a library of reusable cross-cutting architectural

concerns, and applying COMSA to other existing MSA languages.

Acknowledgments

This work was partially funded by the French ANR SCALER project.

References

[1] Edsger W Dijkstra. On the role of scientific thought. Selected writings on computing: a personal

perspective, pages 60–66, 1982.

[2] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno,

Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source benchmark suite for microser-

vices and their hardware-software implications for cloud & edge systems. In Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 3–18, 2019.

[3] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Ludovico Iovino, and

Amleto Di Salle. MicroART: A Software Architecture Recovery Tool for Maintaining Microservice-

Based Systems. In 2017 IEEE International Conference on Software Architecture Workshops (IC-

SAW), pages 298–302, 2017.

[4] Florian Rademacher. A Language Ecosystem for Modeling Microservice Architecture. PhD thesis,

Kassel, Universität Kassel, Fachbereich Elektrotechnik / Informatik, 2022.

[5] Chris Richardson. Microservices patterns: with examples in Java. Simon and Schuster, 2018.

[6] Alen Suljkanović, Branko Milosavljević, Vladimir Ind̄ić, and Igor Dejanović. Developing

Microservice-Based Applications Using the Silvera Domain-Specific Language. Applied Sciences,

12(13):6679, 2022.

[7] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N degrees of separation: Multi-

dimensional separation of concerns. In Proceedings of the 21st International Conference on Soft-

ware Engineering, ICSE ’99, pages 107–119, New York, NY, USA, 1999. Association for Computing

Machinery.

[8] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann, and

Samuel Kounev. TeaStore: A Micro-Service Reference Application for Benchmarking, Modeling

and Resource Management Research. In Proceedings of 2018 IEEE 26th International Symposium

on the Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, MAS-

COTS’18, pages 223–236, September 2018.

7

	Introduction
	Motivating Example
	Concern-Oriented Microservice Architecture
	Principles
	Motivating Example Revisited
	COMSA Toolchain

	Related Work
	Conclusion and Perspectives

